Readout Electronics for SiPM Arrays Used for Nuclear Medical Imaging

William W. Moses¹, Martin Janecek¹, Patrick J. McVittie¹, Jean-Pierre Walder¹, Bob Zheng¹, Henrik von der Lippe¹, Woon-Seng Choong¹, Qiyu Peng¹, Chinh Vu¹, Mickel McClish², Purushottam Dokhale², Christopher J. Stapels², James F. Christian², and Kanai S. Shah² ¹Lawrence Berkeley National Laboratory and ²RMD, Inc.

November 3, 2011

SiPM Readout ASIC
OpenPET Electronics

• This work was supported in part by the U.S. DOE (contract No. DE-AC02-05CH11231) and in part by the NIH (NIBIB grant No. R01-EB006085)

Large Variety of SiPM Arrays Available **Philips** RMD dSiPM **SSPM** Hamamatsu FBK **SensL MPPC** SiPM SPM Very Attractive for PET Properties Vary (20 pF – 900 pF, «Pixel Area)

Channel Count Reduction Needed for PET!

~100,000 detector elements in a PET Camera

Current Division
 → 16-fold Reduction for 8x8 Array
 Standard Technique for PET w/ Multi-Anode PMTs
 Many Commercial PET Cameras Use Similar Readout

Insert Buffer Between SiPM & Resistor Array
 Restores Timing Properties

Current-Current Converter

Photograph of 16-Input Prototype (Photo Required for *All* ASIC Presentations)

AMS 0.35 µm TSMC CMOS, high voltage

Chip Dimensions: 2.5 mm x 2.5 mm

64-Input Version Just Back from Foundry...

Performance Tests (16-Channel) w/ Pulser

Input Rise Time: 4.7 ns Output Rise Time: 5.8 ns

Performance Tests (16 Channel) w/ LSO Array

Nuclear Medicine Research Community Needs "Industrial-Strength" Electronics
Needs Can Be Met By Single, *Flexible* Design!

All Detector Outputs Look the Same

Time

Tremendous Variation in How Outputs Are Combined
 Digitize, Then Combine Outputs in Firmware

OpenPET System Architecture

Supports 512 Block Detectors (4096 With Multiplexers)
 SB + 8 DBs Makes Nice Test Stand (64 Block Detectors)

All Inputs Have Individual ADC, LE Discriminator, & TDC

Timing Resolution

Test Pulse

TOF Module Pair

• 32 Channel TDC in Cyclone II FPGA
 • Performance Good Enough for Time-of-Flight PET

OpenPET Support Board

Support Board Designed, Built, & Tested

Front View

Back View

Slot 1–8: Detector Boards Slot 9: Coincidence Board Interface Slot 10: PC Interface (USB, Ethernet, SD Card, Detector Bias, 20 LEDs) Slot 11: User Digital I/O (2 RS-232, 48 Digital I/O, External Clock In) Slot 12: Debugging (JTAG, 4 Logic Analyzer Connectors, 30 LEDs)

VME Form Factor to Reduce Cost

openPET Vision

Open Source

- Hardware, Firmware, and Software
- Schematics, Gerbers, BOM,...
- **Active User Community**
 - Share Software and Expertise
 - Module, Calibration, DAQ, Display,...

Hardware Readily Available

- Support Boards Available Now
- Detector Boards Available Spring 2012

http://OpenPET.LBL.gov

ASIC Achilles Heel: Power Consumption

Amplifier power proportional to pixel capacitance (& bandwidth)
 Pixel capacitance proportional to area

 \rightarrow Power / area is constant (75 mW / cm² \rightarrow 500 W / PET camera)

How Can We Reduce Power / Area?

Conclusions

SiPM Readout ASIC Front-End Electronics

- Current Division
 → 16x Lower Channel Count
- 16 Channel Prototype Fabricated & Tested
- 64 Channel ASIC Recently Received
- •75 mW / cm²

OpenPET Back-End Electronics

- "Open Source" Electronics for Nuc. Med.
- Programmable Extensive Use of FPGAs
- Support Boards Available Now
- Detector Boards Available Spring 2012