• Motivation

• A glimpse of the (long) History of ABALONE

• Prototyping:
 FACTORY PROTOTYPE
 vs.
 PROTOTYPE FACTORY

 NOW:
 our factory prototype = prototype factory

• First Prototype Assembly
Collaborators

- Eckart Lorenz
- UC Davis: D. Ferenc, A. Chang, D. Johnson, J. Thomson
 (simulations, overall design, assembly, components, patent protection)
 (GEANT, readout, components)
- U. of Split and Rijeka: D. Ferenc, D. Dominis, I. Puljak, N. Godinovic
 (transport system design and manufacture, simulations, readout)
Mr. Liouville

NEED TO CONCENTRATE INFORMATION BY FACTOR 1000 – 100,000

Vacuum will stay with us for quite a while

Photocthode = the cheap(est?) semiconductor
ABALONE

NOVEL MASS-PRODUCTION TECHNOLOGY
and a novel design that allows full implementation of that technology

⇒ PATENT PENDING
& LOTS OF KNOW-HOW
Will reveal all secrets!
ABALONE

NOVEL MASS-PRODUCTION TECHNOLOGY
and a novel design that allows full implementation of that technology

➔ PATENT PENDING & LOTS OF KNOW-HOW
Will reveal all secrets!
The day after other companies do so.
ABALONE
as a
FLAT PANEL PHOTOSENSOR WITHOUT DEAD AREA
ARRAYS OF
“hex-paraboloid-hemispheres”
IceCube OPTICAL MODULE

NO PMT !!!

NO DYNODES
NO VOLTAGE DIVIDER
NO ELECTRODES
NO uMETAL
~NO MANU-FACTURE
MASS-PRODUCTION, SCALLABLE
EXTREME ROBUSTNESS (mech, el.)
~100% COLLECTION EFFICIENCY
etc.
ABALONE
PMTs – 1960’s Technology

- Bulb ~handmade
- Dynodes ~handmade
- Feedthroughs = ‘ugly’
- Cs, K, Na, Sb
WITH A FINE TOUCH OF A GENIUS
Development of Other Vacuum Devices

~1960

~2000

Production Cost ‘11 < $300/m²
3 existing mass-production technologies

ENCLOSURE: FLAT-PANEL TV

ELECTRON DETECTION: SEMICONDUCTOR Scintillator + Geiger-MODE AVALANCHE DIODE ‘Light Amplifier’

PHOTON→ELECTRON CONVERSION: CLASSICAL PHOTOCATHODE ALREADY VERY GOOD

LOOKING FORWARD FOR IMPROVEMENTS
But not critical

INFORMATION CONCENTRATOR
TOM YPSILANTIS et al.,
AQUARICH CONCEPT (also development for LHCb)

~1997

VERY FAR FROM BEING „MINIMALISTIC“
Imaging hybrid photon detectors with minimized dead area and protection against positive ion feedback

Daniel Ferenc*

Div. PPE, CERN, 1211-Geneva, 23 Switzerland
Received 15 December 1998

Abstract

Imaging Hybrid Photon Detectors (HPD) have been developed for integration in large area Cherenkov detectors for high-energy physics and astrophysics. The presented designs – developed particularly for the experiments MAGIC, LHCb and AQUA-RICH – comprise very good imaging properties, protection against positive ion feedback and/or minimum dead area. The underlying innovations are discussed in some detail. © 1999 Published by Elsevier Science B.V. All rights reserved.

Keywords: Ion feedback; Dead area; RICH detectors; Atmospheric Cherenkov telescopes; Photon detectors; Gamma ray astronomy; High-energy physics

Fig. 1. Proximity focusing 5 in.-diameter HPD. Photoelectron trajectories.
6 MONTHS
+10 years it took us to reach the technological point where it became possible
Cs, K, Na, Sb
Remain inside the PMT

Bulb
≈handmade

Dynodes
≈handmade

Feedthroughs

MASS-PRODUCTION TECHNOLOGY

MASS-PRODUCTION TECHNOLOGY
MASS-PRODUCTION TECHNOLOGY

The KEY:
VACUUM PROCESSING

- MINIMUM # OF MASS-PRODUCED (MOLDED) GLASS ELEMENTS (3)
- ASSEMBLY
 - CONTINUOUS VACUUM PRODUCTION LINE
 - SUPER-SIMPLE
 - SUPER-FAST
 - SUPER-CHEAP (FACTOR 20 less than PMT)

⇒ NO METAL ELEMENTS ⇐
⇒ NO CERAMICS ⇐

⇒ ABALONE
MASS-PRODUCTION TECHNOLOGY

The KEY:
VACUUM PROCESS

- MINIMUM # OF MASS-PRODUCED GLASS ELEMENTS (3)
- ASSEMBLY
 - CONTINUOUS VACUUM PRODUCTION LINE
 - SUPER-SIMPLE
 - SUPER-FAST
 - SUPER-CHEAP (FACTOR 20 less than PMT)

NO METAL ELEMENTS
NO CERAMICS

→ ABALONE
THE ABALONE VACUUM ASSEMBLY

1. **ONLY 3** MOLDED GLASS ELEMENTS: A, B, C
2. SEALED TOGETHER AT ONCE, DIRECTLY ➔ GLASS-TO-GLASS WITH OUR OXIDE-FREE METHOD ➔ **ONLY 2** ULTRATHIN SEALING SURFACES: X, Y
3. X & Y = **THE ONLY 2** ELECTRICAL CONNECTIONS (GND and HV)
THE ABALONE VACUUM ASSEMBLY

1. **ONLY** 3 MOLDED GLASS ELEMENTS: A, B, C
2. SEALED TOGETHER AT ONCE, DIRECTLY \(\Rightarrow \) GLASS-TO-GLASS WITH OUR OXIDE-FREE METHOD
\(\Rightarrow \) **ONLY** 2 ULTRATHIN SEALING SURFACES
3. X & Y = THE **ONLY** 2 ELECTRICAL CONNECTIONS (GND and HV)

MINIMUM NUMBER OF SIMPLE ELEMENTS, EASILY ASSEMBLED IN A CONTINUOUS VACUUM PRODUCTION LINE
MASS-PRODUCTION - 1
COMPRESSION MOLDING
MASS-PRODUCTION - 2
CONTINUOUS VACUUM PRODUCTION LINE – MINI-PROTOTYPE FACTORY EXISTS @ UCD !!!
ULTRAFAST, FULLY CONTROLLED :
THIN-FILM MATERIAL DEPOSITION
INCLUDING PHOTOCATHODE !!!!
ReFerence Flat-Panel 7-pixel
EXTREMELY IMPORTANT

WE HAVE MASTERED THE OXIDE-FREE GLASS-TO-GLASS SEALING TECHNIQUE AND ON SMALL SURFACES (~2 mm)
PREREQUISITE FOR ABALONE
WE HAVE CONDUCTED MANY TESTS, INCLUDING DESTRUCTIVE ONES
(this windowlet is still sealing vacuum):
HAMAMATSU

FAST DECAY PHOSPHOR

J9758

For Electron Beam Detection,
High Speed and Long Life Phosphor

FEATURES

● High Speed Decay (Decay Time: 2.3 ns)
● Long Life
● High Brightness Efficiency

APPLICATIONS

● Semiconductor Inspection Instrument
● SEM (Scanning Electron Microscopy)
● Mass Spectrometry
● General Electron Detection

Figure 1: Phosphor Decay Characteristics

<table>
<thead>
<tr>
<th>RELATIVE OUTPUT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

SPECIFICATIONS

GENERAL

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description/Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensional Cutline(1)</td>
<td>49.0 mm × 0.5 mm</td>
<td></td>
</tr>
<tr>
<td>Detection Energy Range (Electron beam)</td>
<td>5.0 to 12</td>
<td>kV</td>
</tr>
<tr>
<td>Decay time (90% to 10% Typ.)</td>
<td>2.3 ns</td>
<td></td>
</tr>
<tr>
<td>Peak Emission Wavelength</td>
<td>400 nm</td>
<td></td>
</tr>
<tr>
<td>Electrode Thickness (Aluminum)</td>
<td>50 nm</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>+55 to +65°C</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Applicable maximum size is 460 mm.

COMPARISON OF OTHER PHOSPHOR

<table>
<thead>
<tr>
<th>Phosphor</th>
<th>Decay Time (90% to 10%)</th>
<th>Relative Intensity (DC)</th>
<th>Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>J9758</td>
<td>2.3 ns</td>
<td>100</td>
<td>Good</td>
</tr>
<tr>
<td>P47 Phosphor</td>
<td>150 ns</td>
<td>100</td>
<td>Good</td>
</tr>
<tr>
<td>VAP</td>
<td>59 ns</td>
<td>50</td>
<td>Good</td>
</tr>
<tr>
<td>Plastic Scintillator</td>
<td>5 ns</td>
<td>25</td>
<td>No good</td>
</tr>
</tbody>
</table>

(1) Subject to local technical requirements and regulations, availability of products included in this promotional material may vary. Please consult with our sales office before deploying it. This publication is intended to provide information or reference. Specifications are subject to change without notice. No patents are granted to any of the circuits described herein, ©2000 Hamamatsu Photonics KK.
SIGNIFICANTLY UPGRADED FACTORY
SUPERB VACUUM
IN 5 UHV CHAMBERS
SUPERB CONTROL – e.g. MASS SPECTROMETERS ON EACH CHAMBER
FIRST SPINOFF
THE FUTURE OF ABALONE

• OUR COMMUNITY SHOULD RECOGNIZE THE POTENTIAL OF ABALONE AND SUPPORT IT ON ALL LEVELS

• THE ABALONE TECHNOLOGY IS
 • VERY SIMILAR TO MODERN SEMICONDUCTOR AND TV-PANEL TECHNOLOGY
 • VERY DIFFERENT FROM PMT TECHNOLOGY

• PATENT PENDING (GUARANTEE FOR INVESTORS)

• STARTUP COMPANY FORMATION UNDER WAY