Large Area Phototubes for Next Generation Large Scale Astroparticle Physics Experiments

> Bayarto Lubsandorzhiev Institute for Nuclear Research RAS Moscow Russia and University of Tuebingen Tuebingen Germany

L.M. Balyasniy⁴, S.A. Belyanchenko³, L.B.Bezrukov¹, S. Dolinsky⁵, R. Falkenstein², P. Grabmayr², Yu.N.Gordienko⁴, G. Hallewell⁷, J. Jochum², B.K. Lubsandorzhiev^{1,2}, N.B.Lubsandorzhiev¹, J. Nause⁶, B. Nemeth, V.A. Poleshuk¹, R.V. Poleshchuk¹, V. Rangarajan, B.A. Shaibonov (Jr)¹

 ¹ Institute for Nuclear Research of RAS, Moscow, Russia
² Kepler Centre for Astro and Particle Physics, University of Tuebingen Tuebingen, Germany
³ JSC "MELZ-FEU", Moscow, Russia
⁴ SC "SPU GEOFIZIKA-NV", Moscow, Russia
⁵ GE Global Research, Niskayuna, NY, USA
⁶ Cermet Inc., Atlanta, GA. USA

⁷ CPPM, Marseille, France

"Any big experiment should boost development of new experimental techniques which will pave the way for new, more sensitive experiments"

A.E.Chudakov

First generation of large scale neutrino experiments (underground water Cherenkov arrays) IMB

Kamiokande-I,II; Super-Kamiokande

20" R1449 20" R3600

- Detection of neutrino signal from SN1987A
- Discovery of neutrino oscillation

Deep underwater neutrino experiments

XP2600 PHILIPS/PHOTONIS

QUASAR-370 KATOD/INR

Record timing and excellent SER

- Proof of principle of high energy neutrino detection
- Discovery of fresh water luminescence
- Discovery of fresh water bioluminescent microflashes

Next generation neutrino experiments Water Cherenkov experiments

UNO, DUE, TRE UNO: 80 000 20" PMTs DUE: ~200 000 20" PMTs TRE: ~200 000 20"PMTs

Liquid scintillator experiment LENA

vertical design is favourable in terms of rock pressure and buoyancy forces

Challenge to the development of large sensitive area photodetectors

Conventional PMTs or Hybrid Tubes?

Photoelectron backscattering in PMTs

8" ET9350KB

Jitter ~ 2.5-3 ns (FWHM)

Prepulses - ~1%

Late pulses - 4-5%

Photoelectron backscattering – general inherent phenomena of classical vacuum PMTs

ev, LIGHT2011 November2011

R3600-06 0,5 m cathode

Jitter - ~4,7 ns (FWHM); QE~23% at 400 nm 8-9 kHz noise (>0.1 pe) 3 counts/cm² (20°C)!!! <1 counts/cm² (0 °C)!!!

Afterpulses

Fast afterpulses – 300 ns; Long afterpulses – 300-15 µs

Observed only in two samples of 8" PMTs (EMI and Photonis) B.K.Lubsandorzhiev, LIGHT2011 RingbergCastle 1 November2011

QUASAR-370

RingbergCastle 1 November2011

Quasar-370 afterpulses - <1%

QUASAR-370

EMI9350KB

18

Afterpulses

Hybrid tubes have record timing and excellent SER

BUT

There is one substantial drawback --- slow time response due to scintillator light emission kinetics

Solution ---- fast high efficiency scintillators

G - the first stage amplification factor of hybrid tubes

- $G = Y \times k \times \eta(eff)$
 - Y scintillator light yield

k - collection efficiency of photons on the small PMT's photocathode

 $\eta(\text{eff})$ - effective quantum efficiency of the small PMT

Small PMT with higher effective QE will provide better parameters

Requirements for scintillators:

- high light yield
- fast emission kinetics
- vacuum compatibility
- compatibility with phocathode manufacturing procedure: high temperature, aggressive chemical environment etc.

22

Scintillators have to be:

Inorganic

Nonhygroscopic

Time resolution of hybrid phototubes and scintillator parameters

- W(t) ~ exp(-(G/ τ)t)
- G the first stage amplification factor
- $G=n_{\text{p.e.}} \ / \ N_{\text{p.e.}}$

 $n_{\text{p.e.}}$ - # of p.e. detected by small PMT; $N_{\text{p.e.}}$ - # of p.e. on the phototube cathode

- $G \sim Y(E_e)$
- Y scintillator light yield
- τ scintillator decay time

Scintillator should have Y/ τ as high as possible

ZnO:Ga

Luckey D., 1968 NIM Light yield = NaI(Tl); Decay time - 0.4 ns!

W.Moses. NIMA (LBNL-50252) Light yield - 15000 γ/MeV; Decay time - 0.4 ns.

Hypothetical hybrid tube with ZnO:Ga and high QE fast small PMT would be a fantastic photodetector with <1ns jitter (FWHM) and <1ns anode pulse width!

"ZnO:Ga – ideal scintillator for hybrid tubes" B.Lubsandorzhiev and B.Combettes TNS 2008

ZnO:Ga crystals from Cermet Inc. Atlanta, GA, USA

~300 μ thickness

$\sim 1 \text{cm}^2$ area

Pilot sample of HPD with ZnO:Ga crystal based on image intensifier

Pilot sample's GaN photocathode sensitivity

500

$\tau \sim 650 \text{ ps}$, light yield ~ $1200 \text{ }\gamma/\text{MeV}$

Jitter (TTS)

 $\Delta t_{hpd} \sim 750 \text{ ps} (FWHM); \quad \Delta t_{LED} \sim 700 \text{ ps}$

Single electron response

Practically no single pe peak

There is at least one application for which hybrid tubes equipped with the ZnO:Ga crystals with the light yield even at present level are very interesting

Wide angle EAS Cherenkov Arrays

(TUNKA, SCORE, LHAASO, Auger-Next etc)

Primary cosmic rays studies in the energy range of 10¹⁵-10¹⁸ eV

Width of EAS Cherenkov signals is sensitive to the mass composition of primary cosmic rays

No need to operate in 1 pe mode (threshold ≥ 100 pe)

D.M.Seliverstov et al.

BaF₂:Tm - $\tau \sim 0.9$ ns; slow component is suppressed! Light yield – 4000-6000 γ /MeV

N.Surin et al.

Metal-organic scintillators – a few ns decay time; light yield – ~10 000 γ /MeV Vacuum compatible! Temperature?

CONCLUSION

There are two good options for large are photodetectors for next generation astroparticle physics experiments – Classical vacuum PMTs and Hybrid Phototubes.

Good news are coming for hybrid phototubes development: new fast high efficiency scintillators.

ZnO:Ga is a very promising scintillator for hybrid phototubes with luminescent screens.

It is necessary to increase the light yield of the crystals.

Search for new fast scintillator materials of high efficiency should be continued. Fast "new" BaF2 and metal-organic scintillators are promising.