PHILIPS sense and simplicity

The Status of the Digital

Silicon Photomultiplier Development

Thomas Frach, Andreas Thon, Ben Zwaans, Carsten Degenhardt, Rik de Gruyter, Oliver Mülhens

Philips Digital Photon Counting

Digital SiPM – New Type of Silicon Photomultiplier

- Analog sum of charge pulses
- Analog output signal

Digital SiPM

- Each diode is a digital switch
- Digital sum of detected photons
- Digital data output

Digital SiPM – Cell Electronics

Digital SiPM – Sensor Architecture

- Operating frequency: 200MHz
- 9bit TDC (23ps bin width)
- Configurable trigger network
- Validation logic to reduce sensor dead time due to dark counts
- JTAG interface
- Electrical trigger input for test and TDC calibration

Digital SiPM – Sensor Family

DLD8K Demonstrator (2009):

- 8192 cells
- Integrated TDC
- On-chip inhibit memory controller
- External FPGA controller
- 160 bond wires

DLS 6400-22 digital SiPM (2010):

- 25600 cells
- TDCs, controller, data buffers
- JTAG for configuration & test
- 48 bond wires

DLS – Sensor Architecture

DLS – State Machine

- 200MHz (5ns) system clock
- Variable light collection time 0 20µs
- 20ns min. dark count recovery
- dark counts => sensor dead-time
- data output parallel to the acquisition of the next event (no dead time)
 - Trigger at 1, \geq 2, \geq 3 and \geq 4 photons
 - Validate at ≥4 ... ≥64 photons

(possible to bypass event validation)

DLD8K – Dark Counts

Control over individual SPADs enables detailed device characterization

- Over 90% good diodes (dark count rate close to average)
- Typical dark count rate at 20°C and 3.3V excess voltage: ~150cps / diode
- Low dark counts (~1-2cps) per diode at -40°C

DLD8K – Photon Detection Efficiency

- Peak PDE >30% at 430nm and 3.3V excess voltage
- No anti-reflective coating used, optical coupling not optimized
- Needs independent verification

DLD8K – Optical Crosstalk

Direct measurement using one ,bad' diode as light generator:

- Acquire dark count map around the light source for corrections
- Activate light source and test diode simultaneously:
 - Events with 1 photon are dark counts
 - Events with 2 photons are either randoms or optical crosstalk
- Use the dark count map to correct for randoms

Typical total optical crosstalk in a 5x5 neighborhood: 7% - 9%

DLD8K – Temperature Sensitivity

ps-laser trigger, 2100 photons/pulse, 24ps FWHM timing resolution

- PDE drift: 0.33% K⁻¹
- TDC drift: 15.3ps K⁻¹
- PDE drift compensation by adapting the bias voltage
- TDC re-calibration using electrical trigger

DLD8K – Photon And Time Resolution

- · Sensor triggered by attenuated laser pulses at first photon level
- Laser pulse width: 36ps FWHM, λ = 410nm
- Contribution to time resolution (FWHM):

SPAD: 54ps, trigger network: 110ps, TDC: 20ps

• Trigger network skew currently limits the timing resolution

DLD8K – Trigger Network Skew

TDC Laser Map (Skew)

TDC Laser Map (Sigma)

- Diodes activated one-by-one and triggered by a divergent ps-laser pulse.
- Many photons per diode&pulse \rightarrow negligible avalanche spread uncertainty.
- Laser trigger&pulse spread and TDC resolutions are included in the final σ .

DLD8K – Scintillator Measurements

- 3 x 3 x 5 mm³ LYSO in coincidence, Na-22 source
- Time resolution in coincidence: 153ps FWHM
- Energy resolution (excluding escape peak): **10.7**%
- Excess voltage 3.3V, 98.5% active cells
- Room temperature (31°C board temperature, not stabilized)

DLD8K – Scintillator Measurements (II)

- 3 x 3 x 5 mm³ Ca co-doped LSO:Ce in coincidence, Na-22 source
- Time resolution in coincidence: 120ps FWHM
- Energy resolution: 10%
- Room temperature

D. R. Schaart, H. T. van Dam, G. J. van der Lei, S. Seifert, "The Digital SiPM: Initial Evaluation of a New Photosensor for Time-of-Flight PET," 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference, Valencia, Spain, October 23-29, 201

DLD8K – Čerenkov Light Detection

- PMMA radiator coupled via air gap to two dSiPMs (DLD8K) in coincidence
- Box isolated and temperature-controlled with a TEC to $2 3^{\circ}C$
- Cooperation between Giessen University (Prof. Düren) and Philips DPC
- First measurements at CERN SPS: $\sigma = 60.7 ps$

PHILIPS DLS 3200-22 (2011)

- Based on DLS 6400-22
- Fully compatible interface
- Two diode cells merged vertically resulting in 59.4µm x 64µm cell
- 3200 micro-cells per pixel
- Max. fill factor 84%
- Currently 78% (wide guard rings)
- Improved trigger network
- New trigger level scheme
- Modified validation scheme
- Improved event processing

DLS 3200-22 – Comparision

New Experimental Design DLS 3200-22:

- 3200 cells per pixel, 12800 cells per sensor
- 59.4µm x 64µm cell size, 78% area efficiency (incl. electronics)
- Based on (and compatible to) DLS 6400-22 sensor

DLS 6400-22

DLS 3200-22 – Dark Count Rate

- Dark count rate at 20°C, 3.3V excess voltage
- Average dark count rate ~ 550cps per SPAD
- Scales with SPAD sensitive area (2954µm² vs. 783µm² in DLD8K)

DLS 3200-22 – Optical Crosstalk

- Optical crosstalk ~18% due to higher diode capacitance (factor ~2.8)
- Linear dependence on excess voltage (as expected)
- Has to be taken into account in saturation correction

DLS 3200-22 – Energy Resolution

- 4 x 4 x 22 mm³ LYSO crystal
- Vikuiti reflector
- Attached with Meltmount
- Na-22 source

DLS 3200-22 – Energy Resolution

Detected Photons

- 3.3V excess voltage, 20°C
- 99% active cells
- Non-linearity correction
- Optical crosstalk included [Burr et al.]
- dE/E = 9.2%

Energy Spectrum

LIGHT 2011

Energy [keV]

DLS 3200-22 – Saturation Correction

Saturation correction including optical crosstalk model [Burr et al.,2007]:

Simple saturation correction neglecting optical crosstalk:

• Optical crosstalk seems to limit the energy resolution

DLS 6400-22 – Crystal Identification

- 2x2 Array of 3x3x15mm³ LYSO
- 1:1 coupling using MeltMount
- Illuminated by ²²Na source
- Corrected only for saturation
- dE/E = 11% (combined)

Digital SiPM – Tiles

- 8 x 8 pixels
- 4-sides tileable

Digital SiPM – Small Crystal Identification

- Laser measurements on a 0.5mm grid
- Best case (no scatter, no light guide)
- ~1600 photons per laser pulse

Digital SiPM – Small Crystal Identification

- Array of 30 x 30 LYSO crystals
- Crystal size: 1 x 1 x 10mm³
- Coupled via light guide to one digital SiPM tile (4 x 4 dies)
- Data plotted in log scale
- Strong floodmap compression close to tile edge due to missing neighbor tiles

P. Düppenbecker, Philips Research

DLS Tiles an Modules

- Enables the construction of scalable detectors with large number of channels
- Power / thermal management included in design

DLS Tile – Scintillator Readout

- LYSO array, 8 x 8 crystals, 4 mm x 4 mm pitch, 22 mm length
- DLS-3200-22-44, measurement at +10°C

Energy resolution per pixel

Summed histogram over all 64 pixels

DHILIDS

DLS Tile – Scintillator Readout

- LYSO array, 8 x 8 crystals, 4 mm x 4 mm pitch, 22 mm length
- DLS-3200-22-44, measurement at +10°C

Timing resolution per pixel [ps]

Summed histogram over all 64 pixels

Sensors For New Applications

- Cutting-edge experiments need high-performance sensors
 - Current sensor architecture may not fulfill all requirements
 - Ideally, the existing sensor can be extended to match the requirements but this is not always possible (different requirements on cell/chip size)
 - Dedicated designs needed but require large NRE investment per design
- Dedicated SiPMs, different cell and die sizes, analog or digital data processing
 - Vanishing boundary between photon detection and data processing
 - Early user feedback and application knowledge crucial for development
 - \rightarrow allow the users to develop their own dedicated digital SiPMs

\rightarrow Philips/NXP plan to offer multi-project wafer runs to the HEP community

- Many experienced designers already working on mixed-signal ROCs
- Develop your own digital SiPM sensors tailored to your experiment
- Share the experience and mask cost with other users
- Is there sufficient demand for multi-project wafer service in this technology?

Summary

- Digital SiPM implemented in a high-volume CMOS process
- Configurable architecture, individual control of each SPAD
- Tiles of 4 x 4 sensors and modules with 2 x 2 tiles developed
- New design with improved fill factor of 78% currently being tested
- Multi-project wafer runs planned to allow users to develop application specific sensors. Please contact us if you are interested.

Digital SiPM – Trigger Logic

- Each sub-pixel triggers at first photon
- Sub-pixel trigger can be OR-ed or AND-ed to generate probabilistic trigger thresholds
- Higher trigger threshold decreases system dead-time at high dark count rates at the cost of time resolution

Trigger Probability per Photon

Digital SiPM – Afterpulsing Probability

Time differences of two consecutive dark counts in a single diode.

Afterpulsing: deviation from the Poisson distribution in the first few μ s. Many diodes show afterpulsing probabilities of less than 0.1%, few are in the 2-3% range.

Digital SiPM – Time-to-Digital Converter

- Two identical 9 bit TDCs running with 180° phase-shifted clocks
- 100MHz reference clock generated from 200MHz system clock
- Each TDC has ~0.5ns wide 'blind spot' close to clock edge \rightarrow bin 0
- Two-phase clock guarantees at least one valid TDC value for any event
- For ~90% of the events, both TDC values can be used to increase accuracy
- TDC calibration using dark counts or randomly distributed events

Digital SiPM – Time-to-Digital Converter

- Average TDC bin width 23 ± 2.8ps
- Non-linearity corrected by look-up tables inside the readout FPGA
- Online correction for TDC drift due to temperature and voltage variation
- Periodic TDC calibration test using external (SYNC) signal

DHIIDS

Digital SiPM – Trigger Network Skew

- Chip illuminated by divergent picosecond laser beam
- Laser trigger synchronized to the reference clock
- All diodes measured sequentially
- 10000 events captured and time stamp histogram fitted with a Gaussian
- Gaussian mean \rightarrow delay of the selected trigger path
- Average trigger network delay subtracted from the data