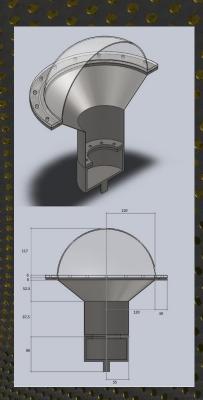
Design and FEA simulations of pressure withstanding PMT encapsulations for LENA


and

Algorithms to identify fast afterpulses on a previous pulse

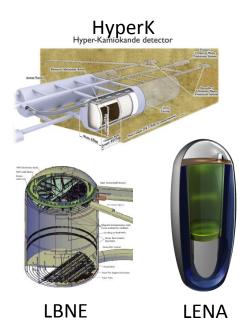
Marc Tippmann

Technische Universität München Lehrstuhl für Experimentelle Astroteilchenphysik

Light2011, Ringberg 2011/10/31

Overview

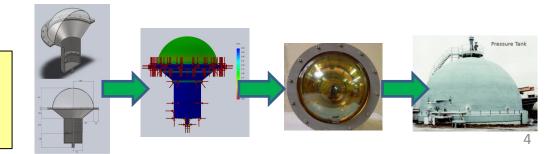
Pressure withstanding PMT encapsulations for LENA


- Why encapsulate PMTs?
- Design
- Finite Elements Analysis simulations + results
- Next steps

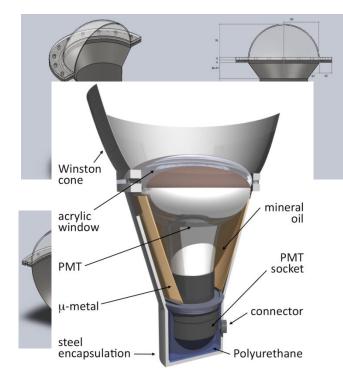
Fast Afterpulses in PMTs + SiPMs

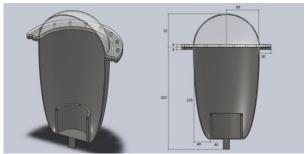
- Causes
- Reasons to study them
- Algorithms to detect fast Afterpulses on the flank of a previous pulse

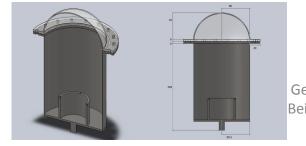
Summary



Pressure withstanding PMT encapsulations for LENA: Why encapsulate PMTs?


- Next-generation land-based neutrino experiments like
 HyperK, LBNE or LENA use tanks with heights of 50-100m
 - → High pressure at the tank bottom
 - LENA: ≈9.8bar(LAB) + safety margin
 - → At the moment no available PMT model fulfills requirements
- a) Develop new PMTs (LBNE)
- b) House PMTs in encapsulations (LENA)
 - No restrictions on PMT model to be used
 - **+** Cheaper?
 - Faster development
 - **★** LENA: certainly possible to fulfill requirements
 - Introduce radioactivity


How to develop an encapsulation?


Design, pressure simulations, build prototype, pressure tests

- Configuration
 - Acrylic glass transparent window
 - Stainless steel body housing, one or two parts
 - Also incorporate Mu-metal, Winston Cone and connection to other PMTs + tank
 - not crucial for pressure simulations → at a later date
- Different encapsulation designs
 - Conical
 - based on Borexino + Double Chooz encapsulation
 - Spherical
 - as in deep sea neutrino telescopes / IceCube
 - Elliptical
 - Cylindrical
- Create engineering drawings with CAD software:
 - SolidWorks Educational Edition Academic Year 2010-2011 SP4.0

German Beischler

Pressure withstanding PMT encapsulations for LENA: Pressure simulations

- Simulate behaviour under pressure with a Finite Elements Analysis (FEA) simulation software
 - Engineering drawings and FEA pressure simulations were done with same software

Software: SolidWorks Educational Edition Academic Year 2010-2011 SP4.0,

Simulation Premium package

• Settings: Linear static study, 12bar pressure, node distance 3mm ± 0.15mm

Materials: High impact resistant acrylic glass,

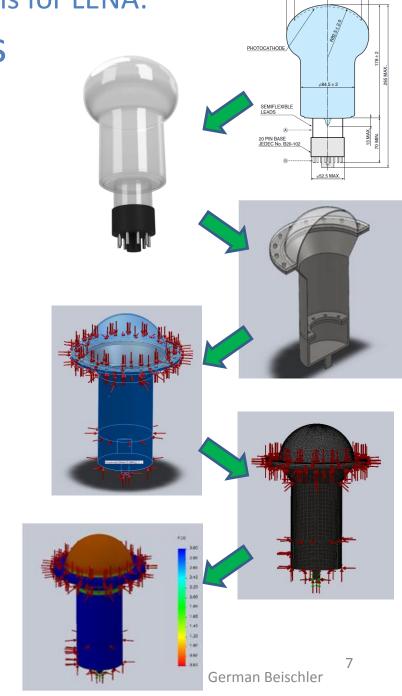
1,4404 stainless steel X2CrNiMo17-12-2

Computer: Intel i7-2600, 8GB DDR3-RAM,

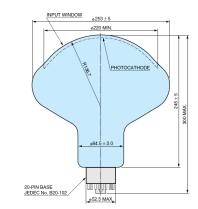
AMD Radeon HD 6450 1GB GDDR3,

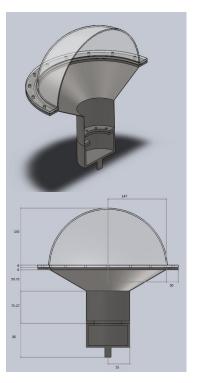
Win7 Prof. 64bit

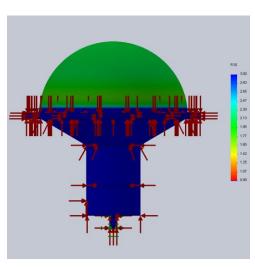
- So far designs + simulations for 5 candidate PMTs:
 - Hamamatsu: R7081 (10"), R5912 (8"), R6594 (5")
 - Electron Tubes Enterprises Ltd.: 9354 (8"), 9823 (5")

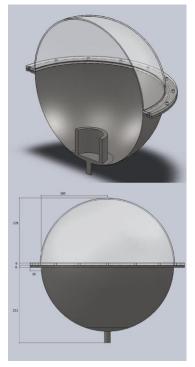

German Beischler

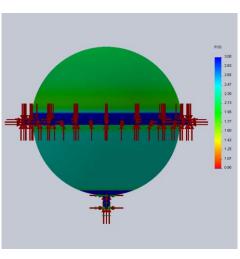
- Was treated in a bachelor thesis by German Beischler
 - In consultance with Harald Hess (head of workshop + SolidWorks expert of our chair)
 - Continues these studies!


Pressure simulations


Procedure:


- Import PMT contour from engineering drawing in datasheet
- Rotate to obtain model of PMT
- Construct encapsulation based on PMT dimensions and experience from design of the Borexino + Double Chooz encapsulation
- Simulate encapsulation with 12bar pressure applied
 - Apply forces → meshing → simulate to determine factor of safety
 - Vary thicknesses of acrylic glass + stainless steel to find minimum values
- Compare results for different designs regarding weight (U, Th, K impurities in materials), surface (adsorbed Rn) and construction costs



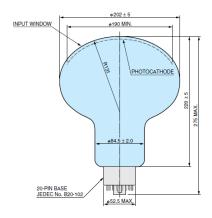

Pressure withstanding PMT encapsulations for LENA Pressure simulation results: Hamamatsu R7081 (10")

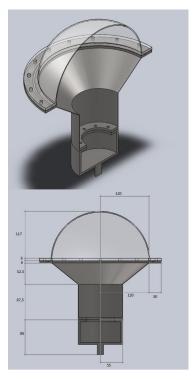
Conical encapsulation:

Steel: 2mm thickness, 4.38kg

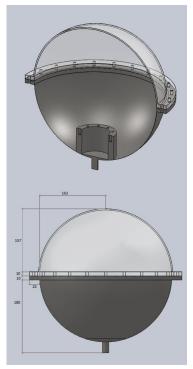
Acrylic glass: 4mm thickness, 0.86kg

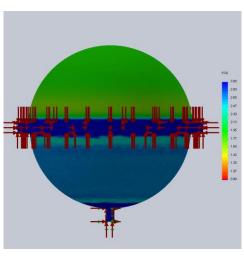
Total surface: 0.69m²


Spherical encapsulation:


Steel: 0.5mm thickness, 4.08kg

Acrylic glass: 5mm thickness, 1.48kg


Total surface: 1.01m²


Pressure simulation results: Hamamatsu R5912 (8")

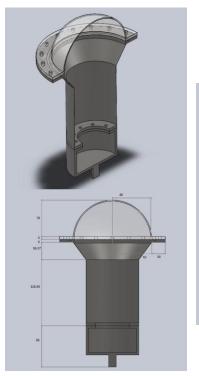
Conical encapsulation:

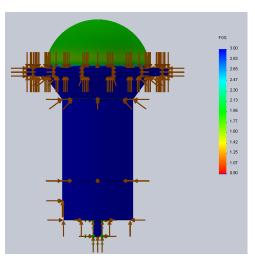
Steel: 1mm thickness, 3.24kg

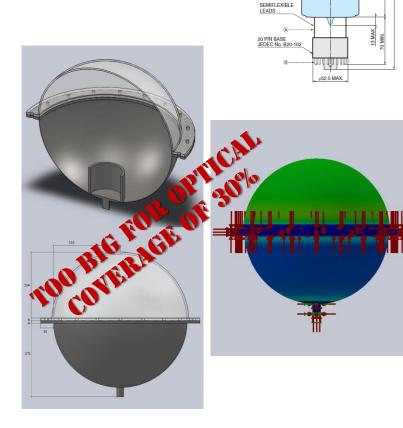
Acrylic glass: 3mm thickness, 0.50kg

Total surface: 0.53m²

Spherical encapsulation:


Steel: 0.5mm thickness, 4.66kg


Acrylic glass: 4mm thickness, 1.10kg


Total surface: 0.83m²

Pressure withstanding PMT encapsulations for LENA Pressure simulation results:

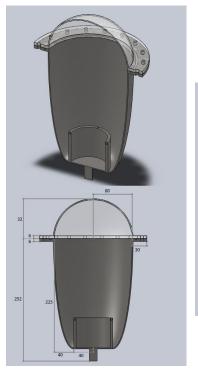
Hamamatsu R6594 (5")

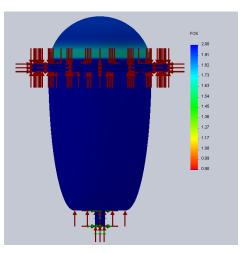
Conical encapsulation:

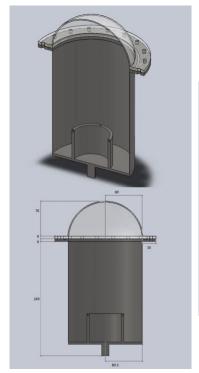
Steel: 1mm thickness, 2.77kg

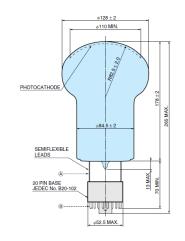
Acrylic glass: 2mm thickness, 0.22kg

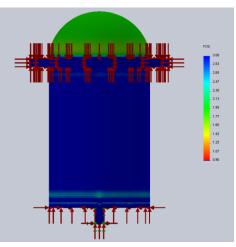
Total surface: 0.37m²


Spherical encapsulation:


Steel: 0.5mm thickness, 2.75kg


Acrylic glass: 4mm thickness, 0.94kg

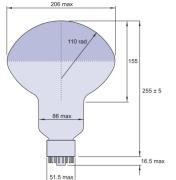

Total surface: 0.78m²


Pressure simulation results: Hamamatsu R6594 (5")

Elliptical encapsulation:

Steel: 2mm thickness, 3.06kg

Acrylic glass: 2mm thickness, 0.22kg

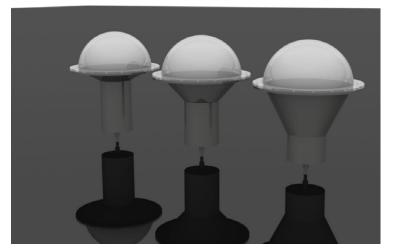

Total surface: 0.41m²

Cylindrical encapsulation:

Steel: 0.5mm thickness, 2.61kg

Acrylic glass: 2mm thickness, 0.22kg

Total surface: 0.46m²

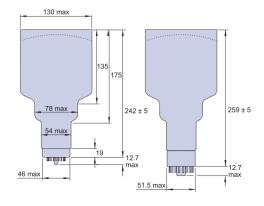


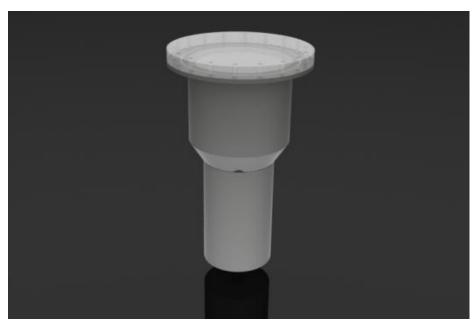
Pressure simulation results: ETEL 9354 (8")

- For R5912 (8") conical encapsulation was most promising → detailed study for this type for ETEL 9354
- Minimize weight in dependance of height of conical section
 - Thickness steps reduced to 0.1mm, for most lightweight encapsulation 0.01mm
 - Weight minimal for maximum length of conical part

Height of conical section [mm]	Minimal steel mass [kg]	Minimal acrylic glass mass [kg]	Total surface [m ²]
33	3.45	0.44	0.535
54	3.20	0.43	0.534
70	3.14	0.43	0.535
130	2.94	0.43	0.549

Conical encapsulation:

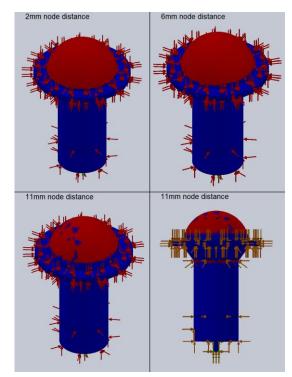

Steel: 0.45mm thickness, 2.94kg

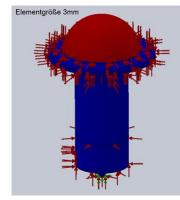

Acrylic glass: 2.40mm thickness, 0.43kg

Total surface: 0.55m²

Pressure simulation results: ETEL 9823 (5")

- Plano-concave photo cathode → try flat acrylic glass window
- Very high thickness necessary
 - → Probably less material for spherical acrylic glass window needed

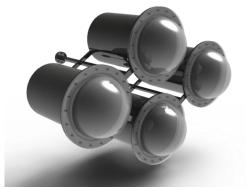



Conical encapsulation:

Steel: 0.6mm thickness Acrylic glass: 17mm thickness

Pressure withstanding PMT encapsulations for LENA Pressure simulations: cross-check of results

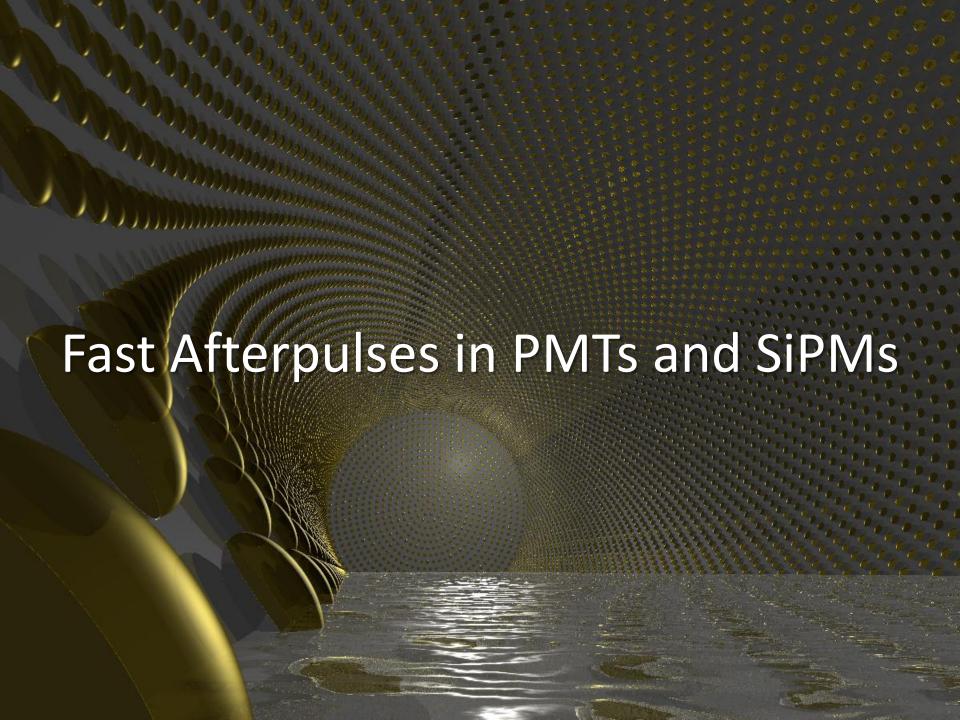
- Reproducibility
 - Repeated same simulation several times →
 - Same results
 - However only on fast computer results varied for slow computer!
- Vary node distance from 2-11mm
 - No big change for 2mm → 3mm
 - For 11mm unphysical results
 - Where possible repeat simulation with 2mm to verify results

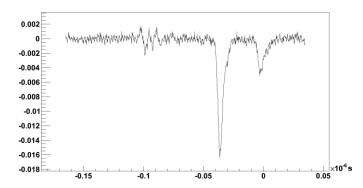


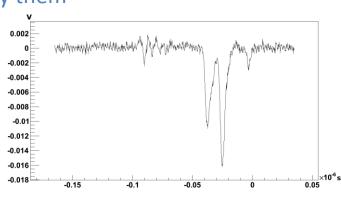

Factor of safety distribution: red areas are unstable (FoS <1)

Next steps:

- Further crosschecks
- More exact simulations: reduce node distance (locally or globally), use adaptive methods
- Complete design (fixture for PMT inside encapsulation, filling valve) + create complete optical module: incorporate Mu-metal, Winston Cones, connections to other PMTs + wall
- Optimize encapsulations for least weight + least production costs
- Create + simulate designs for further PMTs (R6091, 9822, R11780, D784)
- Distortion analysis
- Aging simulation
- Build prototype for PMT of choice
- Test in pressure tank
 - Adapt design to meet requirements
 - Influence of PMT implosion on adjacent encapsulations





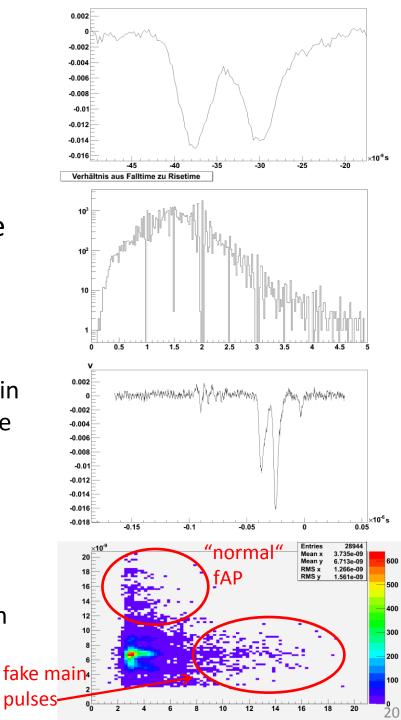


Fast Afterpulses (fAP): Reasons to study them

- Detectors using PMTs/SiPMs: fAP influence
 - Energy resolution
 - Event reconstruction: position + time resolution, tracking
 - SiPM: with increasing overvoltage PDE, fAP probability and cross-talk increase
 - → Lose single photon resolution for several photons incident at same time
 - → Tradeoff between PDE and energy resolution necessary
 - → To be able to reduce fAP probability study fAP to understand mechanisms of production better
- To be able to analyze them first need to identify all fAP in recorded pulses
 - Easy for fAP occurring after end of original pulse
 - Difficult for fAP sitting on flank
 - → Need detection algorithms to study them

Fast Afterpulses (fAP):

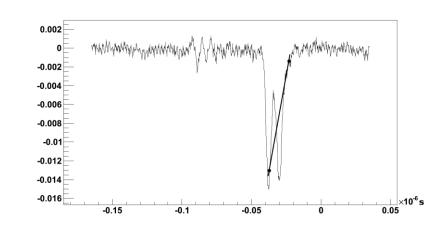
Algorithms to detect fast Afterpulses on the flank of a previous pulse

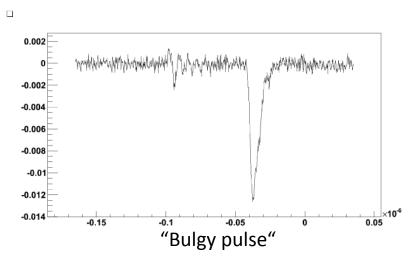

- Used 50000 pulses to develop algorithms
 - Instrumentation:
 - Light source: Edinburgh Instruments EPL-405-mod, 50ps FWHM diode

laser, 403nm

- PMT: ETL 9305 (+1300V)
- FADC: Acqiris DC282, used 2Ch with 4GHz sampling, 10bit
- Sampled 1500 pulses by eye →
 - ≈4.9% fAP on flank of main pulse
 - ≈2.1% after main pulse within 70ns
- Different classes based on recognition criteria:
 - Time
 - Pulse shape
 - Area
- Was treated in a Bachelor thesis by Martin Zeitlmair

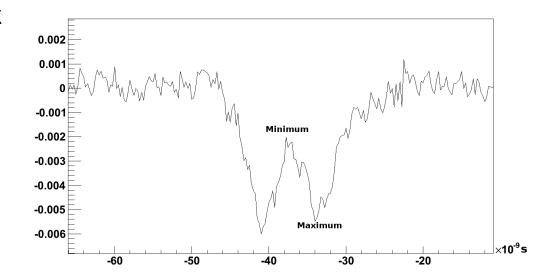
Fast Afterpulses (fAP): Detection algorithms: Time


- Ratio fall time/rise time
 - Principle: fAP on falling flank → time until pulse falls below 10% of pulse height is increased
 - Problems:
 - Fake main pulses: if fAP maximum > main pulse maximum, fAP is detected as pulse maximum → ratio too low
 - Conclusion:
 - No strong separation visible
 - Can be used for big ratios
 - Use as cross-check after other algorithm for fake main pulses



Fast Afterpulses (fAP): Detection algorithms: Pulse shape

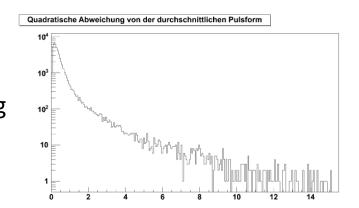
Subtract pulse


- Principle: subtract expected pulse shape on falling flank → fAP remain + can be found with simple threshold criterium
- Model used for pulse shape
 - Linear interpolation: reliable, but low recognition rate
 - Parabola: low detection rate, problems with pulses with ≈linear decay: "bulgy" pulses
 - Exponential decay: high recognition rate, but bulgy pulses filter through
 - Average pulse shape: same as exponential
- Choose higher threshold for exponential decay / average pulse form

Fast Afterpulses (fAP): Detection algorithms: Pulse shape

- Search maximum/minimum
 - Principle: fAP on falling flank
 produces an additional
 minimum + maximum
 - Methods:
 - Number of higher/lower points in interval around current point: bigger than threshold → extremum;
 - prone to noise

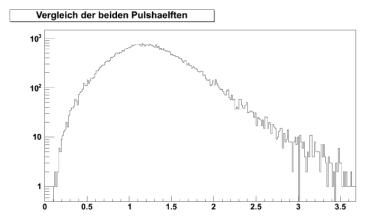
- Three intervals: If maximum of interval 2 is bigger than maxima of interval 1+3 \rightarrow peak found; more than one peak \rightarrow fAP
 - Works very good for intervals with >3ns window
 - Next step: include threshold for height difference between minimum and fAP peak to be able to use smaller windows → find more AP which are small or close to peak

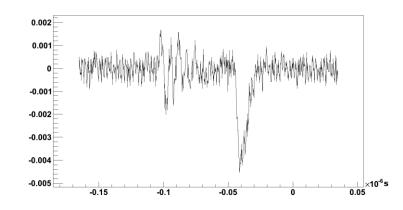

Fast Afterpulses (fAP): Detection algorithms: Pulse shape


Search for inflection points

- Principle: fAP on falling flank produces two additional inflection points → two additional zero crossings in 2nd time derivative
- Problems: up to now jitter from noise too strong
- Conclusion: need to average over more points

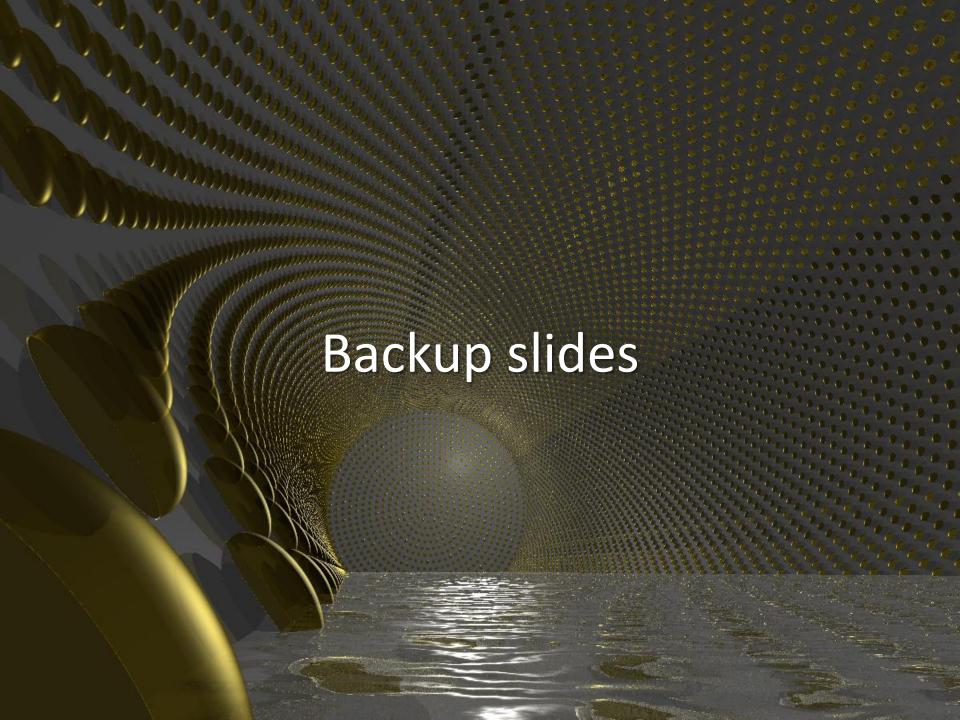
Quadratic difference from average pulse form


- Principle: integrate squared difference of pulse shape to average pulse shape for each data point; fAP on flank produce irregular pulse shape → higher value
- Problems:
 - Pulses with small heights apparently have different shape + vary more strongly due to noise
- Conclusion: should be usable for high values, use separate average pulse form for small pulses

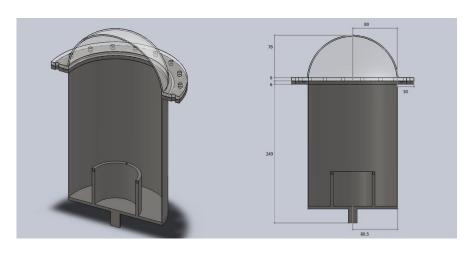


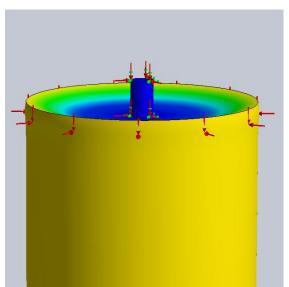
Fast Afterpulses (fAP): Detection algorithms: Area

- Area ratio falling flank/rising flank
 - Principle: fAP on falling flank adds charge → time integral over falling flank gets bigger
 - Problems:
 - Fake main pulses → ratio too small
 - Bulgy pulses → higher ratios
 - Conclusion:
 - Usable for large ratios
 - For fake main pulses: use as crosscheck after other algorithm

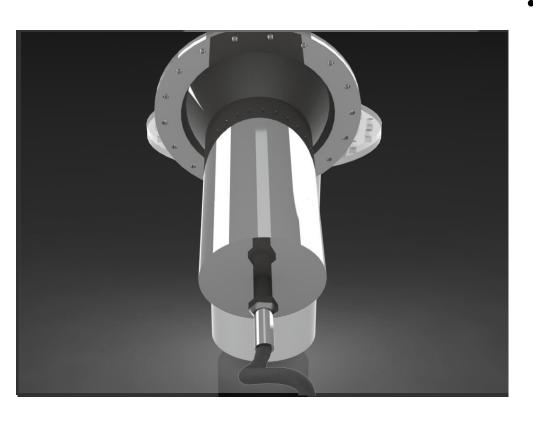


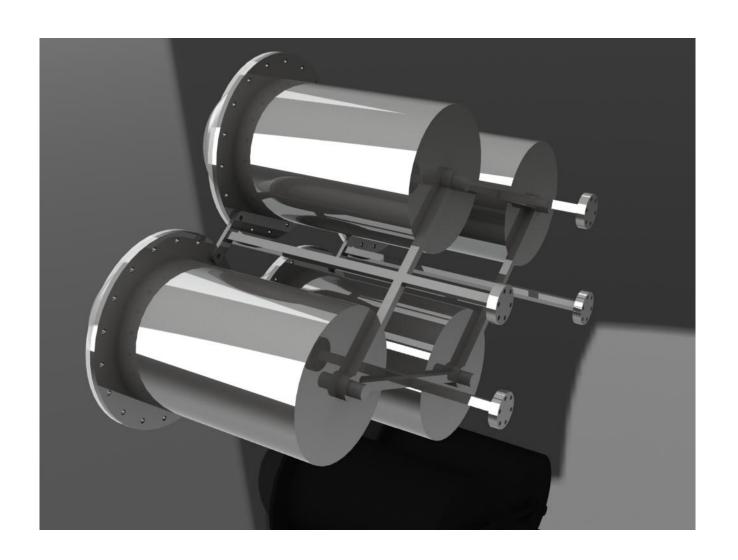
Summary


- Pressure withstanding PMT encapsulations for LENA:
 - Have designed engineering drawings of first encapsulations in CAD + simulated them with FEA software; method established → now refine it
 - Results still very preliminary, need to construct complete optical module and optimize for weight + costs before comparisons between different designs are possible
 - First results look promising
- Fast afterpulse detection algorithms
 - Developed several algorithms, identified problems
 - Still optimizing to eliminate disturbing effects and increase detection rate
 - With only small adjustments and combined evaluation of two methods, most algorithms should improve substantially


References

- For further information please refer to:
 - LENA White Paper, http://arxiv.org/abs/1104.5620
 - German Beischler, bachelor thesis, Technische Universität München, August 2011, http://www.e15.physik.tu-muenchen.de/fileadmin/downloads/thesis/bachelor/2011 BSc German Beischler.pdf
 - Martin Zeitlmair, bachelor thesis, Teschnische Universität München, July 2011, http://www.e15.physik.tu-muenchen.de/fileadmin/downloads/thesis/bachelor/2011 BSc Martin Zeitlmair.pdf


Cylindric encapsulation Hamamatsu R6594


- Simple form
 - probably easy to produce + low costs
- Steel thickness 0.5mm
- Problem: floor was pushed in → tearing of side walls
 - First solution: enforced floor, however 5mm thickness needed
 - Optimize design: enforce walls in critical areas

Assembly of a R6594 conical encapsulation

- Assembly sequence for conical encapsulation:
 - 1. Solder voltage divider circuit board to socket for PMT pins
 - 2. Insert into lower part of metal encapsultion / plastic housing
 - 3. Infuse polyurethane → fixes VD + socket
 - 4. Bolt down upper part of metal encapsulation + retaining ring to hold down PE
 - 5. Insert PMT into socket
 - 6. Attach acrylic glass window (using o-ring seal) + brackets connecting PMTs to modules and attaching them to the walls
 - 7. Fill up encapsulation with oil

Attachment to wall

