Particle Physics School Munich Colloqium

The GALATEA Test Facility

Analysis of Surface Effects for coaxial n-type Germanium Detectors

Sabine Irlbeck

Max-Planck-Institut für Physik

December 9th, 2011

What are we interested in?

- What are we interested in?
- n-type coaxial Germanium Detectors and the Physics we can do with them

- What are we interested in?
- n-type coaxial Germanium Detectors and the Physics we can do with them
- The special detector "Supersiegfried"

- What are we interested in?
- n-type coaxial Germanium Detectors and the Physics we can do with them
- The special detector "Supersiegfried"
- Pulses and Mirror Pulses

- What are we interested in?
- n-type coaxial Germanium Detectors and the Physics we can do with them
- The special detector "Supersiegfried"
- Pulses and Mirror Pulses
- Surface Channel Effects

- What are we interested in?
- n-type coaxial Germanium Detectors and the Physics we can do with them
- The special detector "Supersiegfried"
- Pulses and Mirror Pulses
- Surface Channel Effects
- The experimental Implementation

- What are we interested in?
- n-type coaxial Germanium Detectors and the Physics we can do with them
- The special detector "Supersiegfried"
- Pulses and Mirror Pulses
- Surface Channel Effects
- The experimental Implementation
- First Spectra

- What are we interested in?
- n-type coaxial Germanium Detectors and the Physics we can do with them
- The special detector "Supersiegfried"
- Pulses and Mirror Pulses
- Surface Channel Effects
- The experimental Implementation
- First Spectra
- Conclusion

Characterisation of HPGe Detectors

Characterisation of HPGe Detectors

- Background reduction through event recognition in low-background experiments
 - $0\nu\beta\beta$: localized event
 - ullet γ : multiside events

Characterisation of HPGe Detectors

- Background reduction through event recognition in low-background experiments
 - $0\nu\beta\beta$: localized event
 - ullet γ : multiside events

- Germanium detector properties are important for further analysis, like
 - Charge trapping
 - Surface effects

• electron-hole pair creation

- electron-hole pair creation
- n-type: the electric field pulls the electrons to the core and the holes to the mantle

- electron-hole pair creation
- n-type: the electric field pulls the electrons to the core and the holes to the mantle
- resulting pulses are sampled and digitized at a given frequency

- electron-hole pair creation
- n-type: the electric field pulls the electrons to the core and the holes to the mantle
- resulting pulses are sampled and digitized at a given frequency
- passivation layers

- electron-hole pair creation
- n-type: the electric field pulls the electrons to the core and the holes to the mantle
- resulting pulses are sampled and digitized at a given frequency
- passivation layers
- end plates →
 contamination → creates
 BG if part of energy is seen

"Supersiegfried"

- Cylindrical true coaxial n-type high purity germanium detector
- h = 70 mm
- Inner bore hole r = 5.05 mm
- Outer radius r = 37.5 mm
- 18 + 1 fold segmentation (3z and 6ϕ) \rightarrow segmentation for inference of
 - Event topologies
 - Event positions
- Single segment on one side of the detector

Example pulse seen by "SuSie" - one Event

Pulses and Mirror Pulses

Drift of charge carriers in a hitted segment induces mirror pulses in neighbouring segments

Real Pulse: charge "trajectory" ends at considered segment electrode

Mirror Pulse: charge "trajectory" does not end at considered segment electrode

Ref: Publication: "Pulse shape simulation for segmented true-coaxial HPGe detectors" by I. Abt, A. Caldwell, D. Lenz. J. Liu. B. Maiorovits

Characteristics of Mirror Pulses

Ref: Diploma Thesis: "Mirror pulses and position reconstruction in segmented HPGe detectors" by S.Hemmer

Information about

- Information about
 - The energy deposited

- Information about
 - The energy deposited
 - 2 The position of an event

- Information about
 - The energy deposited
 - 2 The position of an event
 - \bullet Position in $r \rightarrow$ rise time plus polarity of mirror pulses

- Information about
 - The energy deposited
 - 2 The position of an event
 - Position in $r \rightarrow rise$ time plus polarity of mirror pulses
 - \bullet position in $\phi \to {\rm relative}$ strength of mirror pulses

- Information about
 - The energy deposited
 - 2 The position of an event
 - ullet Position in $r \rightarrow$ rise time plus polarity of mirror pulses
 - \bullet position in $\phi \to {\rm relative}$ strength of mirror pulses
- ullet Proximity to end plates o we see long and strange pulses

Surface Channel Effect

Imperfect

Figure adapted from: Ph.D. thesis by D. Lenz

Path of electrons and holes in a detector with an n-type surface channel

Electron-hole pairs created in the surface channel region

(a) close to the n-contact

(b) close to the p-contact

(not to scale) Figure adapted from: Ph.D. thesis by D. Lenz

Experimental Scanning of the Detector

- Sources inside the tank: looking for events which relate to α and $\beta \to \text{surface}$ effects
- Using α and β particles to study the suface \rightarrow they do not penetrate deeply (penetration depth of an electron: \approx 1mm at 1 MeV in Ge)
- Effective inactive layers can be measured very precisely

The Test Stand "Galatea"

Technical Requirements

- Cooling System
- Vacuum
- Adjustable Sources
- Readout Electronics

Inside view into the Vacuum Tank

Detector in its holder surrounded by two movable stages

The GALATEA setup

²²⁸Th Spectrum seen by the "SuSie" Detector in one representive Segment

Resolution (in all measurements)

• Core: \approx 15 keV

Segments: 3-4 keV

• 19th segment: \approx 3 keV

60 Co Spectra seen by the "SuSie" detector in all segments

Status Report

Commissioning phase of Galatea

- Calibration spectra with a ⁶⁰Co and a ²²⁸Th source have been taken
- First test runs with an α (243 Am) and a β (90 Sr) source

Work in progress: grounding, cable shielding, vacuum, cooling, improvement of the core resolution...

90Sr Spectrum seen by a ReGe detector

REGe = Reverse-Electrode Coaxial Ge Detector

Calibration Measurements

- The REGe Detector
 - Geometry is related to cylindrical Ge detectors
 - mantle: p-contact, core: n-contact
 - 3 keV 10 MeV
- **Q** Galatea Collimator holder
 - W collimator segments
- **3** β source: 90 Sr

$$ullet$$
 90Sr $ightarrow$ 90Y + e $^-$ + $ar{
u}$

90 Sr Spectrum seen by a REGe Detector

What is our plan?

- What is our plan?
 - Study surface effects in a segmented true-coaxial HPGe detector
 - Identify and characterize surface events

- What is our plan?
 - Study surface effects in a segmented true-coaxial HPGe detector
 - Identify and characterize surface events
- What do we need?

- What is our plan?
 - Study surface effects in a segmented true-coaxial HPGe detector
 - Identify and characterize surface events
- What do we need?
 - \bullet Scan of a special 19-fold segmented Ge detector with α and β sources
 - A test stand which allows a fully scan of the detector

- What is our plan?
 - Study surface effects in a segmented true-coaxial HPGe detector
 - Identify and characterize surface events
- What do we need?
 - \bullet Scan of a special 19-fold segmented Ge detector with α and β sources
 - A test stand which allows a fully scan of the detector
- Where are we?

- What is our plan?
 - Study surface effects in a segmented true-coaxial HPGe detector
 - Identify and characterize surface events
- What do we need?
 - \bullet Scan of a special 19-fold segmented Ge detector with α and β sources
 - A test stand which allows a fully scan of the detector
- Where are we?
 - Commissioning phase
 - First calibration spectra have been shown

- What is our plan?
 - Study surface effects in a segmented true-coaxial HPGe detector
 - Identify and characterize surface events
- What do we need?
 - \bullet Scan of a special 19-fold segmented Ge detector with α and β sources
 - A test stand which allows a fully scan of the detector
- Where are we?
 - Commissioning phase
 - First calibration spectra have been shown
- Looking forward to full detector scans!

