Universal Scaling of Holographic Superconductors

Steffen Müller

Max-Planck-Institut for Physics, Munich

PPSM Colloquium, January 13, 2012

Condensed Matter/Quantum Matter Systems

Superfluid-insulator quantum phase transitions e.g. with ultracold $^{87}{\rm Rb}$ atoms in an optical lattice

[Henk T. C. Stoof, Nature 415, 25-26]

[Subir Sachdev, 1108.1197]

- 1 Critical Phenomena & Universal Behavior
- Universality in Superconductors/Homes' Law
- 3 Gauge/Gravity Duality for Field Theorists
- 4 Holographic S-Wave Superconductors

- 1 Critical Phenomena & Universal Behavior
- 2 Universality in Superconductors/Homes' Law
- Gauge/Gravity Duality for Field Theorist
- 4 Holographic S-Wave Superconductors

Continuous Quantum Phase Transitions

- Driven by quantum fluctuations
- Non-analyticity in ground state energy E(g) at T=0
- Near critical coupling g_c

$$\Delta \sim J \left| g - g_c \right|^{z
u} \ \xi^{-1} \sim \Lambda \left| g - g_c \right|^{
u} \qquad \Delta \sim \xi^{-z}$$

■ Quantum critical point \longrightarrow quantum critical region for T > 0 with two different regimes:

$$\begin{array}{ll} \Delta > k_{\rm B}T & \qquad \tau \gg \frac{\hbar}{k_{\rm B}T} & \qquad \text{(effectively classical)} \\ \Delta < k_{\rm B}T & \qquad \tau \sim \frac{\hbar}{k_{\rm B}T} & \qquad \text{(quantum critical)} \end{array}$$

Universal Scaling & Quantum Criticality

Quantum Critical Region (QCR)

- $lue{ au}$ independent of microscopic energy scale J
 - → Quantum & thermal fluctuations determine the dynamics
 - \implies Universal lower timescale set by $\tau_{\hbar} = \hbar/k_{\rm B}T$
- QCR effectively describe by a universal QFT depending on:
 - Symmetry of the order parameter (order ↔ disorder)
 - Dimensionality of space(time)/lattice
 - Conserved currents

Mapping of Quantum Models to Classical Models

d dimensional quantum mechanics evolving in imaginary time

d+1 dimensional classical

 \Leftrightarrow statistical mechanics with geometry $\mathbb{R}^d imes S^1$ and 'temperature' g

 S^1 is defined by the temperature of the quantum system via $au=\hbar/k_{\rm B} au$

Universal Scaling & Quantum Criticality

"Proof":

$$Z \propto \text{tr } e^{-\beta H} = \sum_{i} e^{-\beta H(\{s_i\})} = \sum_{i} \left\langle \phi_i(\tau) \middle| e^{-\frac{\tau \mathcal{H}}{\hbar}} \middle| \phi_i(0) \right\rangle$$
$$= \sum_{i} \left\langle \phi_i(t) \middle| e^{-it\frac{\mathcal{H}}{\hbar}} \middle| \phi_i(0) \right\rangle$$

with $\phi(\tau + \hbar\beta) = \phi(\tau)$ and $\tau = \hbar/k_{\rm B}\tau = \hbar\beta = {\rm i}t \longrightarrow \tau \in [0, \hbar\beta].$

O(N) Vector Model/Classical Statistical Model/Quantum Model

N = 1	Ising model	Quantum Ising model
N = 2	XY model	O(2) quantum rotor model boson Hubbard model
N=3	Heisenberg model	O(3) quantum rotor model
N = 4	Higgs sector of SM	???

Universal Scaling & Quantum Criticality

Mapping between QFT/Classical Field Theories

$$\begin{array}{c} d \text{ dimensional QM} & \xrightarrow{\text{imaginary time}} & (d+1) \text{ statistical model} \\ & \Lambda \xi \to \infty & \Big| J/\Delta \to \infty & \text{lattice spacing} & \Big| a \to 0 \\ \\ \text{QFT near critical point} & \xleftarrow{\text{path integral}} & D \text{ dimensional FT} \\ \end{array}$$

Field Theory of the O(N) Vector Model

$$Z = \sum_{i} e^{-\beta H(\{s_{i\alpha}\})} \approx \int \mathcal{D}\varphi_{\alpha}(x) e^{-S[\varphi_{\alpha}(x)]}$$
$$S[\varphi_{\alpha}(x)] = \int d^{d+1}x \left[\frac{1}{2} (\nabla \varphi_{\alpha}(x))^{2} + \frac{r}{2} \varphi_{\alpha}(x)^{2} + \frac{u}{4!} \varphi_{\alpha}(x)^{4} \right]$$

- Potential arise from averaging over microscopic degrees of freedom
- Quantum Ising/rotor models have $z = 1 \longrightarrow$ relativistic field theories

Solutions of Critical QFT for D < 4 and Renormalization

Scaling dimension:

$$\dim \varphi_{\alpha}(x) = \frac{D-2}{2}$$

RG flow equations for couplings

$$\frac{\mathrm{d}r}{\mathrm{d}\lambda} = 2r \qquad \frac{\mathrm{d}u}{\mathrm{d}\lambda} = (4-D)u$$

- For D > 4: Trivial fixed point $r_* = 0 = u_* \longrightarrow$ free theory
- For $D \le 4$ corrections to RG flow: $r \sim |g g_c| \ne 0 \longrightarrow \text{vicinity of QCP}$ is strongly coupled

So far:

- $lue{}$ Universal QFT is invariant under conformal transformations \longrightarrow CFT
- For D > 4 we have a free CFT but for D < 4 it is strongly coupled
- For T = 0 analytical continuation to real time controllable

Problems for D < 4 and T > 0:

- Quantum-Classical mapping gives rise to imaginary time correlation functions
 - Analytical continuation is ill-defined especially for $t\gg\hbar/k_{\rm B} au$
 - ▶ No classical analog of quantum interference effects \longrightarrow Quantum phase coherence time τ_{φ} (in QCR $\tau_{\varphi} \sim \hbar/k_{\rm B}\tau$)
- Interactions destroy quasi-particles pictures:
 - How to define properties/dynamics/transport in QCR?
 - ▶ Description for strongly interacting regimes without reference to quasi-particles → Gauge/Gravity Duality

1 Critical Phenomena & Universal Behavio

- Universality in Superconductors/Homes' Law
- 3 Gauge/Gravity Duality for Field Theorists
- 4 Holographic S-Wave Superconductors

Properties of Conventional/High T_c Superconductors

Conventional Superconductors

- Infinite DC conductivity
- Ideal diamagnet
- Superconducting/normal phase transition
- Cooper pairing via phonon exchange

Unresolved Problems in High T_c Superconductors

- Unknown pairing mechanism between electrons
- Pseudo-gap between insulator/superfluid phase
- $lue{}$ QCP below superconducting dome \longrightarrow Is strange metal phase a QCR?

Homes' Law

 All superconductors seem to show an universal scaling law

$$\rho_s \propto \sigma_{\rm DC}(T_c)T(c)$$

[Homes et al., cond-mat/0410719]

• Applying $\rho_s \equiv \omega_{Ps}^2$ and $\sigma_{DC} = \omega_P^2 \tau / 4\pi$:

$$\omega_{\mathsf{Ps}}^2 \propto \frac{\omega_{\mathsf{P}}^2 \tau_c}{4\pi} T_c$$

- Assuming the sum-rules are valid (no missing spectral weight) $\omega_{Ps} = \omega_P \longrightarrow \tau_c T_c = \text{const.}$
- Possibility to check timescale in strange metal phase of order $\tau \sim \hbar/k_{\rm B}\tau \longrightarrow$ "nearly" perfect fluid (universal momentum transport)

- 1 Critical Phenomena & Universal Behavio
- 2 Universality in Superconductors/Homes' Law
- 3 Gauge/Gravity Duality for Field Theorists
- 4 Holographic S-Wave Superconductors

Gauge/Gravity Duality

Conjectures of Gauge/Gravity Duality				
QFT in d dimensional spacetime	\Leftrightarrow	Gravity in $d+1$ dimensional spacetime		
Conformal Field Theory in <i>d</i> spacetime dimensions	\Leftrightarrow	Gravity in $d+1$ dimensional Anti-de-Sitter spacetime		
$N \to \infty$ gauge theories in d spacetime dimensions	\Leftrightarrow	Classical gravity in $d+1$ spacetime dimensions		

Renormalization Flow and AdS-Space

Conjecture 2 of Gauge/Gravity Duality

Conformal Field Theory in d spacetime dimensions

Gravity in d+1 dimensional Anti-de-Sitter spacetime

Coupling constants g are locally dependent on energy/length scale u

$$\frac{\mathsf{d}g(u)}{\mathsf{d}u} = R\big(g(u)\big)$$

- Put length scale u on the same footing as spacetime coordinates:
 - ▶ Scale invariance at RG fixed points $R(g) \equiv 0$:

$$x \to \lambda x$$
, $u \to \lambda u$ \longrightarrow $ds^2 = \frac{L^2}{u^2} \left(dt^2 + d\mathbf{x}^2 + du^2 \right)$

▶ The RG fixed point AdS_{d+1} space isometries \equiv symmetry of CFT_d :

Poincaré symmetry \oplus scale invariance

 \longrightarrow SO(d,2) conformal group in d dimensions

Holographic Principle

Conjecture 3 of Gauge/Gravity Duality

 $N o \infty$ gauge theories in d spacetime dimensions

 \Leftrightarrow

Classical gravity in d+1 spacetime dimensions

Holographic Principle

#(degrees of freedom) in
$$(d+1)$$
 dimensional gravity

■ (Maximal) entropy in gravity

$$S_{
m gravity} = rac{2\pi A_{
m boundary}}{\kappa^2} \quad \longrightarrow \quad \#({
m gravity}_{d+1}) = \infty = \#({
m QFT}_d)$$

■ Regulation → putting field theory on a lattice:

$$S_{\mathsf{QFT}} \sim (R \Lambda)^{d-1} \mathsf{N}^2 \sim rac{(R L \Lambda)^{d-1}}{\kappa^2} \qquad \longrightarrow \qquad rac{L^{d-1}}{\kappa^2} \sim \mathsf{N}^2$$

Gauge/Gravity Dictionary

Basic Dictionary

Operator \mathcal{O} in CFT

 \Leftrightarrow

Dynamical field φ in AdS-spacetime

Sourcing $\mathcal O$ is dual to boundary condition $arphi_{(0)}=J$ at infinity

$$Z_{d+1}[\varphi(x,u) \to \varphi_{(0)}(x)] = \left\langle e^{i \int d^d x \varphi_{(0)}(x) \mathcal{O}(x)} \right\rangle_{QFT}$$

Advanced Dictionary

energy momentum tensor $T_{\mu\nu}$ global symmetry current J_{μ} scalar operator \mathcal{O}_{B} fermionic operator \mathcal{O}_{F}

 \Leftrightarrow

metric g_{ab} local gauge symmetry field A_a scalar field φ fermionic field ψ

Gauge/Gravity Dictionary

Vacuum Expectation Values & Correlators...

...are calculated using functional derivatives with respect to $arphi_{(0)}$

$$\langle \mathcal{O} \rangle = \frac{\delta}{\delta \varphi_{(0)}} \left\langle e^{i \int d^d x \varphi_{(0)}(x) \mathcal{O}(x)} \right\rangle \Big|_{\varphi_{(0)} = 0} = \frac{\delta Z_{d+1} [\varphi \to \varphi_{(0)}]}{\delta \varphi_{(0)}}$$

$$\langle \mathcal{O}(x)\mathcal{O}(y)\rangle = \frac{\delta^2}{\delta\varphi_{(0)}^2} Z_{d+1}[\varphi \to \varphi_{(0)}] \approx \frac{\delta^2}{\delta\varphi_{(0)}^2} e^{-S_{d+1}[\varphi \to \varphi_{(0)}]}$$

Using Hamilton-Jacobi theory the conjugated momentum is

$$\Pi_{(0)} = \frac{\delta S_{d+1}[\varphi \to \varphi_{(0)}]}{\delta \varphi_{(0)}} \longrightarrow \frac{\delta^2 S_{d+1}[\varphi \to \varphi_{(0)}]}{\delta \varphi_{(0)}^2} = \frac{\delta \Pi_{(0)}}{\delta \varphi_{(0)}}$$

■ Solution with general boundary conditions $(\Delta(\Delta - d) = (mL)^2)$

$$\varphi(u\to 0) = \varphi_{(0)}^{\Delta_{-}} + \varphi_{(1)}u^{\Delta_{+}} + \dots \longrightarrow \langle \mathcal{O}(x)\mathcal{O}(y)\rangle = \frac{\Delta_{-}}{L}\frac{\varphi_{(1)}}{\varphi_{(0)}}$$

- 1 Critical Phenomena & Universal Behavio
- 2 Universality in Superconductors/Homes' Law
- 3 Gauge/Gravity Duality for Field Theorists
- 4 Holographic S-Wave Superconductors

Holographic S-Wave Superconductor

Einstein-Maxwell Theory

Einstein Maxwell action with charged scalar field Ψ and $\alpha=\kappa^2/e^2L^2$

$$S = \frac{1}{2\kappa^2} \int d^{d+1}x \sqrt{-g} \left[R - 2\lambda + \frac{2\kappa^2}{e^2} \left(F^2 - |\nabla \Psi - iA\psi|^2 - V(|\psi|) \right) \right]$$

Equations of Motion

$$R_{ab} - \frac{1}{2}Rg_{ab} + \frac{d(d-1)}{2I^2}g_{ab} = \alpha^2 L^2 T_{ab}[A, \Psi], \quad \nabla_a F^{ab} = j_b[A, \Psi]$$

Solutions to Equations of Motion

	$\alpha = 0$ (probe limit)	$\alpha \neq 0$ (backreaction)
$\Psi = 0$	AdS Schwarzschild BH	AdS Reissner Nordström BH
$\Psi eq 0$	AdS Schwarzschild BH	Scalar Hair AdS RN BH

Linear Response Theory

■ Weak and short perturbations:

$$\delta \mathcal{H} = \int \mathsf{d}^d x \, arphi_i(t,x) \mathcal{O}^i(t,x)$$

■ The response of the system is

$$\delta \left\langle \mathcal{O}^i(x) \right\rangle = \int \mathsf{d}^{d+1} y \; G^{ij}_\mathsf{R}(x,y) \varphi_j(y)$$

Causal structure:

$$G_{\mathsf{R}}^{ij}(x,y) = \mathrm{i} heta(t_x - t_y) \left\langle \left[\mathcal{O}^i(x), \mathcal{O}^j(y) \right] \right
angle$$

[Alexei Tsvelik - QFT in CMP]

- Fluctuation-Dissipation theorem:
 - ► Calculate correlators of fluctuations about background solution
 - Charged black hole with finite temperature provides damping
 - → determines dissipative transport coefficients

Transport Coefficients

- Interesting transport coefficient for different time scales "explaining" Homes' law $\tau_c T_c = const.$
 - ▶ Momentum diffusion $D_{\mathsf{M}} \longrightarrow \mathsf{Shear}$ mode pole in $\langle T_{\mathsf{x}\mathsf{v}}, T_{\mathsf{x}\mathsf{v}} \rangle$
 - ► Charge diffusion D_R \longrightarrow Relation between $\chi(\omega, \mathbf{k}) = -\frac{i\mathbf{k}^2}{\omega}\sigma(\omega, \mathbf{k})$
 - Plasma frequency $\omega_P \longrightarrow \text{Dielectric function } \epsilon(\omega, \mathbf{k}) = 1 \frac{\omega_P^2}{c^2}$

$$D_{\mathsf{R}} = \frac{1}{4\pi T} \frac{(2-\bar{Q}^2)(2+\bar{Q}^2)}{2(1+\bar{Q}^2)},$$

$$D_{\mathsf{R}} = \frac{1}{4\pi T} \frac{(2-\bar{Q}^2)(2+\bar{Q}^2)}{2(1+\bar{Q}^2)}, \qquad D_{\mathsf{M}} = \frac{1}{4\pi T} \left(1 + \frac{\mu}{T}(\bar{Q})\frac{n}{s}(\bar{Q})\right)^{-1}$$

Thank You for Listening!