Finding the crystal axes

in an n-type segmented germanium detector

Oleksandr Volynets

Max-Planck-Institute for Physics

Particle Physics School Munich Colloquium Munich, January Friday 13, 2012

Submitted to EPJ C arXiv:1112.5291 [nucl-ex]

Finding the crystal axes

in an n-type segmented germanium detector

Oleksandr Volynets

Max-Planck-Institute for Physics

Particle Physics School Munich Colloquium Munich, January Friday 13, 2012

Submitted to EPJ C arXiv:1112.5291 [nucl-ex]

Outline

- Introduction: germanium detectors
- Anisotropy in germanium crystals
- Experimental setup and simulation
- The method to extraction the axes orientation
- Results, comparison and variations of the method
- Summary

Results

Summary

Introduction

Semiconductor detectors are used to register radiation:

Germanium detectors

Germanium detectors have a very good energy resolution: 4-7 keV @ 2 MeV. They are used for:

- Spectroscopy, to measure low levels of radioactivity;
- Gamma ray tracking;
- $0\nu\beta\beta$ experiments: source=detector approach with detectors enriched in ⁶⁸Ge which $\beta\beta$ decays;

• ...

Analysis techniques for $0\nu\beta\beta$ with Ge detectors

- Detector granularity: segmentation helps to distinguish single-segment events (signal) from multi-segment events (background) and to localize events;
- Analysis of pulse shapes: collected charge pulses differ depending on event topology; simulation may be involved.

Segmentation: background rejection technique

Segmented germanium detectors

Siegfried-II detector:

- Diameter 75 mm, height 70 mm;
- $3z \times 6\phi$ -segmentation;
- High-purity: $\rho_{\rm imp} \sim 0.45 \cdot 10^{10}/{\rm cm}^3$: 1 ion per $\sim 10^{13}$ germanium ions.
- Operational voltage: 2000 V and higher.

(Anisotropy)

Experimental setups

Axes orientation extraction

Results

Summary

Oleksandr Volynets

Results

Summary

Anisotropy

Experimental setups

Axes orientation extraction

Results

Summary

Experimental setups

Axes orientation extraction

Results

Summary

Results

Summary

- ----- Electrical field lines
- ---- Crystallographic axes
- Drift trajectories
- — Segments

Results S

Summary

Effect of anisotropy: conclusion

Anisotropy "changes" segmentation!

Results Summary

Effect of anisotropy: conclusion

Anisotropy "changes" segmentation! Drifting charge cloud of 2 mm at r = 2.5 cm has a spread of 5°.

Results

Summary

A bit of theory: mobility

Drift velocity of charge carriers

 $\mathbf{v} = \boldsymbol{\mu} \cdot \boldsymbol{\mathcal{E}}$

Notations

- v Velocity of charge carriers (electrons, holes)
- μ mobility;
- E electrical field;

Results

Summary

A bit of theory: mobility

Drift velocity of charge carriers

 $\mathbf{v} = \boldsymbol{\mu} \cdot \boldsymbol{\mathcal{E}}$

Mobility is a tensor, drift does not follow $\ensuremath{\mathcal{E}}$

Notations

- v Velocity of charge carriers (electrons, holes)
- μ mobility;
- E electrical field;

Results

Summary

A bit of theory: mobility

Drift velocity of charge carriers

 $\mathbf{v} = \boldsymbol{\mu} \cdot \boldsymbol{\mathcal{E}}$

Mobility is a tensor, drift does not follow $\ensuremath{\mathcal{E}}$

Drift component $\perp \mathcal{E}$

 $egin{aligned} \mathbf{v}_{\phi}
eq 0, \ \mathbf{v}_{\phi} &= f(m{v}_{\langle 111
angle},m{v}_{\langle 100
angle}) \end{aligned}$

Notations

- v Velocity of charge carriers (electrons, holes)
- μ mobility;
- E electrical field;
- $v_{(111)}$, $v_{(100)}$ parameters; electron/hole velocities along axes.

Anisotropy

(Experimental setups)

Axes orientation extraction

Results

Summary

Vacuum cryostat K1

Detector in vacuum cooled through a cooling finger at T = 90 - 120 K.

Vacuum cryostat K1 in simulation

Effect of anisotropy

Energy deposits from a γ source located homogeneous in $\phi,$ Cobalt-60:

Oleksandr Volynets

Results S

Summary

Effect of anisotropy

Charge carriers as they reach the contacts at the outer surface:

Effect of anisotropy: occupancy

Number of events in segments, 1.33 MeV line, single segment cut:

Simulation

Measurements

Number of events in segments, 1.33 MeV line, single segment cut:

• Simulation has a free parameter: axes orientation angle, $\phi_{\langle 110\rangle}^{\rm sim}$;

Extraction method: idea

- Simulation has a free parameter: axes orientation angle, \$\phi_{(110)}^{sim}\$;
- $\bullet~$ For varied $\phi^{sim}_{\langle 110\rangle}$ compare simulated and measured occupancies a test statistic is needed;

Extraction method: idea

- Simulation has a free parameter: axes orientation angle, $\phi_{(110)}^{sim}$;
- $\bullet~$ For varied $\phi^{sim}_{\langle 110\rangle}$ compare simulated and measured occupancies a test statistic is needed;
- The best fit gives a hint about axes orientation.

Extraction method: procedure

- () Vary $\phi^{sim}_{\langle 110 \rangle}$ in 1°steps;
- ② For each $\phi^{sim}_{\langle 110 \rangle}$ a test statistic ϵ is calculated;
- **③** Dependence of ϵ on $\phi_{\langle 110 \rangle}^{sim}$ is a smooth function;
- () $\epsilon \left(\phi_{\langle 110 \rangle}^{sim} \right)$ is fitted with a second order polynomial;
- **3** The minimum of the fit = $\phi_{\langle 110 \rangle}$.

Test statistic

Extraction method: procedure

-) Vary $\phi_{\langle 110 \rangle}^{sm}$ in 1° steps;
- **2** For each $\phi_{(110)}^{sim}$ a test statistic ϵ is calculated;
- **③** Dependence of ϵ on $\phi_{\langle 110 \rangle}^{sim}$ is a smooth function;
- (a) $\epsilon\left(\phi_{\langle 110\rangle}^{sim}\right)$ is fitted with a second order polynomial;
- 3 The minimum of the fit $= \phi_{\langle 110
 angle}$.

Dependence of ϵ on angle parameter $\phi_{(110)}^{sim}$

Extraction method: procedure

-) Vary $\phi_{\langle 110 \rangle}^{sm}$ in 1° steps;
- 2 For each $\phi_{\langle 110 \rangle}^{sim}$ a test statistic ϵ is calculated;
- **③** Dependence of ϵ on $\phi_{\langle 110 \rangle}^{sim}$ is a smooth function;
- (a) $\epsilon \left(\phi^{sim}_{\langle 110 \rangle} \right)$ is fitted with a second order polynomial;
- **③** The minimum of the fit = $\phi_{\langle 110 \rangle}$.

Fit on test statistic

Results and comparison

Method	Value [degree]
True value *	$\phi_{\langle 110 angle} = -0.2^{\circ} \pm 0.4^{\circ} ({ m stat.}) \pm 3^{\circ} ({ m syst.})$
Source on top	$\phi^{ ext{top}}_{\langle 110 angle} = -1.8^\circ \pm 1^\circ (ext{stat.}) \pm 6^\circ (ext{syst.})$
Source at the side **	$\phi^{side}_{\langle 110 angle} = -11.5^\circ \pm 3^\circ(stat.) \pm 7^\circ(syst.)$

* Obtained using a reference method

** The source was misaligned by $\approx 5^{\circ}$

Extraction method: variations

• Various alternatives may have different qualities of the result:

(Results)

Summary

Extraction method: variations

- Various alternatives may have different qualities of the result:
 - Different layers of the detector (top, middle, bottom);
 - Different lines of a source:
 - ⁶⁰Co: 1.17 MeV; 1.13 MeV;
 - 208 TI: 0.58 MeV; 2.61 MeV;
 - Different source positions: top, side.

(Results)

Summary

Extraction method: variations

- Various alternatives may have different qualities of the result:
 - Different layers of the detector (top, middle, bottom);
 - Different lines of a source:
 - ⁶⁰Co: 1.17 MeV; 1.13 MeV;
 - 208 TI: 0.58 MeV; 2.61 MeV;
 - Different source positions: top, side.
- Cobalt lines, 1.17 MeV and 1.33 MeV seem to be best suited:
 - High probability of emission from the source;
 - Wigh enough probability to be fully absorbed in a single segment.

- In some cases a precise knowledge of the crystallographic axes orientation in a Ge-detector is required
- A new method to determine the axes orientation was developed and tested

- In some cases a precise knowledge of the crystallographic axes orientation in a Ge-detector is required
- A new method to determine the axes orientation was developed and tested
- Very sensitive to any imperfection of setup representation in simulation
- The more data is available, the better: enough data is required to get satisfactory accuracy

- In some cases a precise knowledge of the crystallographic axes orientation in a Ge-detector is required
- A new method to determine the axes orientation was developed and tested
- Very sensitive to any imperfection of setup representation in simulation
- The more data is available, the better: enough data is required to get satisfactory accuracy
- No need to move the source, wait and see: much faster than the reference ϕ -scanning method

Simulated pulse

Segment pulse

Core pulse

Pulse length as function of source position

