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SM Higgs Searches

Ap-Dyz1t

1. On Wednesday ATLAS and CMS submitted the results of the
searches for the SM Higgs based on the data collected in 2011
(-5 fb!)

The mass range around 125 GeV is getting harder and harder to

exclude and hints of excess wrt SM prediction are coming out
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Combined results are reported from searches for the standard model Higgs boson in
proton-proton collisions at /s = 7 TeV in five Higgs boson decay modes: 77, bb, T,
WW, and ZZ. The explored Higgs boson mass range is 110-600 GeV. The analysed
data correspond to an integrated luminosity of 4.6-4.8 fb™*. The expected excluded
mass range in the absence of the standard model Higgs boson is 118-543 GeV at 95%
CL. The observed results exclude the standard model Higgs boson in the mass range
127-600 GeV at 95% CL, and in the mass range 129-525 GeV at 99% CL. An excess of
events above the expected standard model background is observed at the low end
of the explored mass range making the observed limits weaker than expected in the
absence of a signal. The largest excess, with a local significance of 3.1c, is observed
for a Higgs boson mass hypothesis of 124 GeV. The global significance of observing
an excess with a local significance >3.1c anywhere in the search range 110-600 (110-
145) GeV is estimated to be 1.50 (2.1¢"). More data are required to ascertain the origin
of this excess.
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ATLAS Results [ooin

A combined search for the Standard Model Higgs boson with the ATLAS experiment at the LHC using datasets
corresponding to integrated luminosities from 1.04 fb™! to 4.9 fb™! of pp collisions collected at /s = 7 TeV is
presented. The Higgs boson mass ranges 112.9-115.5 GeV, 131-238 GeV and 251466 GeV are excluded at the
95% confidence level (CL), while the range 124-519 GeV is expected to be excluded in the absence of a signal. An
excess of events is observed around my~126 GeV with a local significance of 3.5 standard deviations (o). The local
significance of H — yy, H —» ZZ® — £¢¢'*¢"~ and H > WW®™ — £*v{£~v, the three most sensitive channels in
this mass range, are 2.807, 2.10" and 1 40, respectively. The global probability for the background to produce such a
fluctuation anywhere in the explored Higgs boson mass range 110-600 GeV is estimated to be ~1.4% or, equivalently,

2.20.
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A A
N 'The H— 77 channel
RS

1. At LHC the mass range around
120-130 GeV is the most difficult to
explore because bb decay mode is

almost blinded by the huge multijets

Branching ratios

background | |
2. 'The decay mode with highest L A
sensitivity in the low mass range is M. (GeV]
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'The H—771 channel (1)

Ar-ﬂy? '
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There are 3 different final states:
1. full leptonic (12%)

* clean events with two leptons
* main backgrounds: two real leptons from Zzz, ZIl, top, di-boson

* little branching ratio
2. semi leptonic (46%)

* high branching ratio

* main backgrounds: one real lepton and 1 fake tau from Z+jets, W+jets, ttbar, QCD, ...
3. full hadronic (42%)

* high branching ratio

* main backgrounds: events with 2 real taus like Z77 or with two fake taus like multijets

* identification efficiency of two hadronic taus
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The full hadronic final state %)A;é

1. The full hadronic final state is typically considered
as ‘not-worth-to-try’ because of the huge multijets

background

2. 'Therefore this final state has never been used for

the SM Higgs search

3. We want to prove that this channel is not blinded
by multijets events and that it can increase the
combined sensitivity of the H—77 channel
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Why hadronic 7 are difhcult to deal with?

Ap-Dyz1t

1. Hadronic 7 are not leptons,

but jets!

2. It’s very difhcult to distinguish
between taus and jets

> I-prong: w+ 0,1,2 n°
3. It’s necessary to make a trade- Prong:

off between identification

efficiency and rejection power * Collimated and isolated jet with
against jet low track multiplicity

3-prong: tnnt + 0,1 °

* DPossible secondary vertex
4. If we need 2 taus this trade-oft

is doubled

* Energy deposit both in EM and

Hadronic calorimeter
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Strategy of the search %L%L

Our analysis is based on:

1. Collinear Mass Approximation for event selection and
background rejection

2. Track Multiplicity for background estimation
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H—rr—hvhv

[t’s not possible to reconstruct
the invariant mass of the 77
system, i.e. the mass of the
Higgs candidate, due to the

presence of 2 neutrinos

We can assume that the
neutrinos are collinear to the
visible product of the tau
decay

We also assume that all the
missing energy in the event is
carried by the 2 neutrinos

Collinear Mass Approx

Pri = Phit Dv,i
Phi = (Eni, Ph.i)

DPh,i
Pv,i = (Ev,ia Ev,i _,l )
| Ph,il
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Collinear Mass Approx (II)

1. In order to get unique and physical
solutions we need to require that:

-

COS Ad(Tyis,1, Tvis2) > —1

Eni  Epg;
E.i Eni+E,;

O<x1<1 , O0<xm<l

Xi =

2.  The selected events have two taus not
back-to-back with the missing energy h
pointing in the middle of the two

3. 'This approximation has a strong rejection power against not-di-tau events, like
multijets, but the signal efficiency is little because the Higgs needs to be boosted
or recoiling from a hard jet

4. 'This means that the analysis will be not inclusive, but a H+1jet search
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AR(7,7)

NH>r-»

1. Instead of cutting in A¢h, we selects events cutting on

AR=N(A¢? + Ap?)

2. 'This increases the rejection against multijets and also reduces
the tail of the Z mass shape
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Track Multiplicity

Usually a hadronic taus has 1 or 3 tracks produced by the charged pions

These tracks are emitted in a narrow cone and in the tau reconstruction the track
association is performed in a cone of radius AR=N(A¢? + An?)<0.2

In order to enhance the discrimination against quark or gluon initiated jets, we
count the tracks in a wider cone of radius AR<0.6

In order to not include tracks from the underlying event or pileup events, we take
into account the pt correlation of the tracks inside the core (AR<0.2) and outside
with a kp-like algorithm
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The track multiplicity is used to in a 2D fit to estimate the fraction of real and

fake taus in the selected events:
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Z shape

Aﬁ-ﬂ;);’f‘

ner—m

1. The final result will be based on the collinear mass
fit so the modelling Z shape is a very sensitive topic

2. 'The mass shape is heavily dependent on features of
the events which are difhicult to simulate, such as
hard jets multiplicity, underlying events, pileup, ...

3. We want to use a shape taken directly from data, but
it’s not possible to perform a signal-free and pure
/— 71T event selection, so...
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o We select Z—uu,

* and we replace the muons
with taus!

Embedded Z— uu

* These are hybrid events where
only the hadronic tau decay is
simulated and the rest of the
events comes from real data

 'The kinematics of the Z

decay is kept considering also

the effect of the tau mass
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7= up tau decay
W

(a) data event (b) mini event

(c) embedded event
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Summary of the strategy

Ap-Byz £

1. 'The collinear approximation provides the bkg rejection
needed to suppress multijets events

2. 'The two sources of background are estimated from data:

— Z—771: shape from embedded Z— pu events and
normalization from track fit

— Multijets: shape from not-OS events and normalization from
track fit

3. 'This strategy reduces the impact of the uncertainties on
the MC simulation of background events
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#jets with p;>25 GeV
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Mass Distribution
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Systematic Uncertainties %)ﬁL

1. The systematic errors on the signal acceptance
come from tau related uncertainties:

— Tau ID efhciency (4%+4%)
— Tau Trigger 4%

— Jet and Tau Energy Scale (-10%)
— Theoretical prediction (up to 15% for gluon fusion)

ner—m

2. Systematic errors on backgrounds estimation:
— uncertainty on the track fit

— uncertainty on the Z shape due to tau energy scale
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EXPECTED RESULT
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SUMMARY

1. We show that the search for the SM Higgs in the full

hadronic di-tau final state is 7ot hopeless

2. We define an event selection which is able to have a very little
event yield from multijets and the rest is irreducible
background, i.e. Z—77

3. All background estimations is performed with data-driven
methods

4. Now that the evaluation of the systematic errors is done, we
can understand better the weak Foints of the analysis and
improve the strategy for the analysis on the new coming data
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