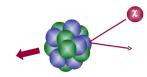
Blind CRESST Data Analysis in the light of Time-Dependent Noise

Florian Reindl

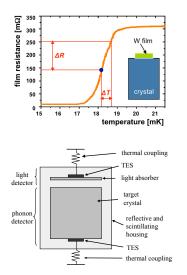
Technische Universität München Max-Planck-Institut für Physik München


IMPRS Workshop on Nov 14th, 2011

Direct Dark Matter Search with the CRESST Experiment

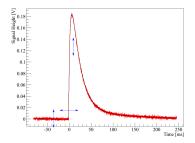
CRESST

 aims for a WIMP detection via their elastic scattering off nuclei.


 uses scintillating CaWO₄ crystals as target material.

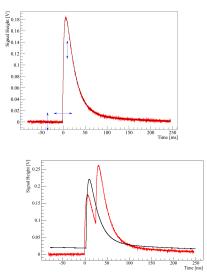
(a)

CRESST Detectors

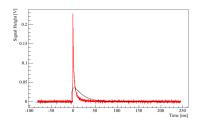


- particle interactions in the crystal excite phonons
- temperature rise detected with Transition Edge Sensor (TES)
- \Rightarrow measurement of deposited energy (few keV)

detector module: simultaneous measurement of


- energy in crystal E
- scintillation light L
- ⇒ active background discrimination by light yield $(\frac{L}{E})$

Standard Template Fit & RMS



- thermal pulse: fit with standard event
- \Rightarrow Amplitude \rightarrow Energy
- \Rightarrow "RMS of Fit [V]"
 - The RMS is the only generic parameter to find events with different pulse shapes.

Standard Template Fit & RMS

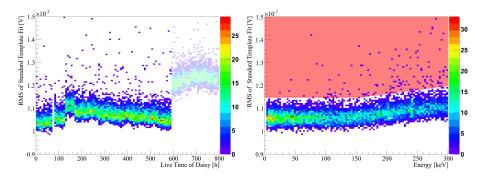
- thermal pulse: fit with standard event
- \Rightarrow Amplitude \rightarrow Energy
- \Rightarrow "RMS of Fit [V]"
 - The RMS is the only generic parameter to find events with different pulse shapes.

direct hit of thermometer carrier

pile-up

Blind Analysis & Contributions to the RMS

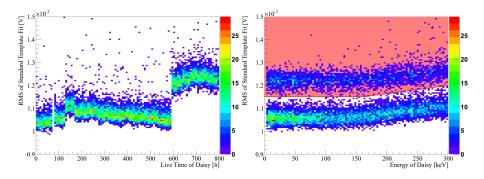
Blind Analysis


- $\bullet\,$ Use small subset of whole data set to develop cuts $\to\,$ Training Set
- \bullet Application of cuts on data set without changes \rightarrow Blind Analysis

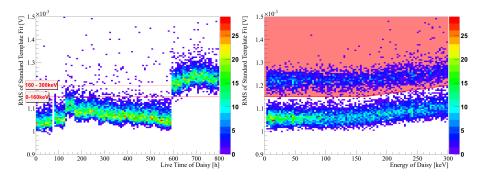
Distinctive feature of the RMS

Two contributions:

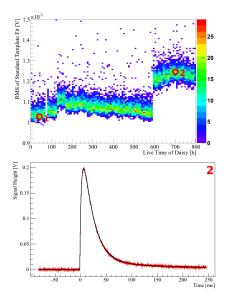
- O differences in pulse shape between pulse and template
- Inoise

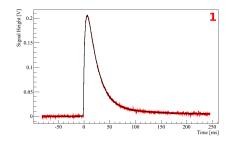

Time and Energy Dependence

• previous analyses: polygon cut to solve energy dependence

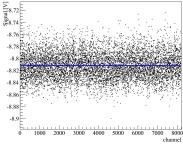

- time dependence prevents development of polygon cut on training set
- adjustment of the polygon cut on data set necessary
- \rightarrow completely blind analysis impossible

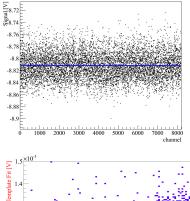
Time and Energy Dependence


- previous analyses: polygon cut to solve energy dependence
- time dependence prevents development of polygon cut on training set
- adjustment of the polygon cut on data set necessary
- $\rightarrow\,$ completely blind analysis impossible

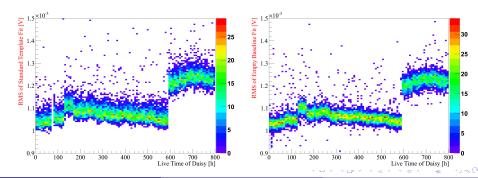

Time and Energy Dependence

- previous analyses: polygon cut to solve energy dependence
- time dependence prevents development of polygon cut on training set
- adjustment of the polygon cut on data set necessary
- $\rightarrow\,$ completely blind analysis impossible


Fit Examples


- nearly no influence of moderate noise changes to energy resolution
- adjustment of RMS cut to current noise level needed

Empty Baselines



Use RMS of fit of empty baselines to detect changes in noise.

Empty Baselines

Use RMS of fit of empty baselines to detect changes in noise.

F. Reindl (TUM - MPP)

Nov 14th 8 / 16

3D RMS Cut

Steps of new 3D RMS Cut

automatically find periods of constant noise

erform energy dependent cut, which is adapted automatically to different noise levels, within each period

Automatic Edge Finding

- **9** smooth/filter data \rightarrow convolution with Gaussian ([f * g](t))
- 2 calculate derivative
- Ind extrema of derivative

Effective Implementation: Canny Edge Detection

• core element: combination of step one and two via convolution with derivative of Gaussian: $\frac{d}{dt}[f * g](t) = [f * \frac{d}{dt}g](t)$

• width of Gaussian (σ) determines sensitivity to noise

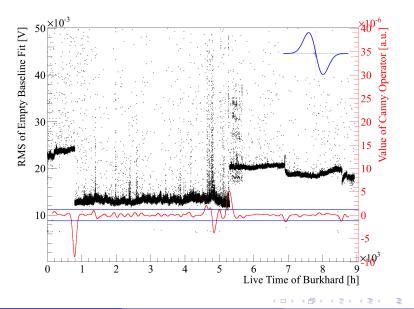
<ロ> (日) (日) (日) (日) (日)

3D RMS Cut

Steps of new 3D RMS Cut

- automatically find periods of constant noise
- erform energy dependent cut, which is adapted automatically to different noise levels, within each period

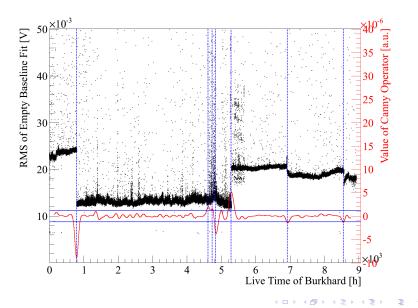
Automatic Edge Finding


- smooth/filter data \rightarrow convolution with Gaussian ([f * g](t))
- alculate derivative
- Ind extrema of derivative

Effective Implementation: Canny Edge Detection

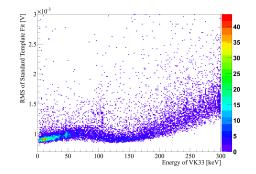
- core element: combination of step one and two via convolution with derivative of Gaussian: $\frac{d}{dt}[f * g](t) = [f * \frac{d}{dt}g](t)$
- width of Gaussian (σ) determines sensitivity to noise

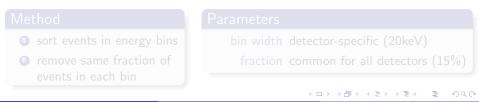
<ロ> (日) (日) (日) (日) (日)


Automatic Edge Finding - Example

F. Reindl (TUM - MPP)

Nov 14th 10 / 16

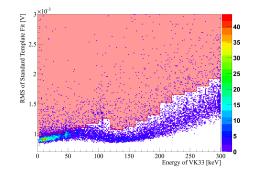

Automatic Edge Finding - Example

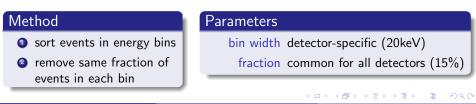


F. Reindl (TUM - MPP)

Nov 14th 10 / 16

Energy Dependent RMS Cut




F. Reindl (TUM - MPP)

Blind CRESST Data Analysis

Nov 14th 11 / 16

Energy Dependent RMS Cut

F. Reindl (TUM - MPP)

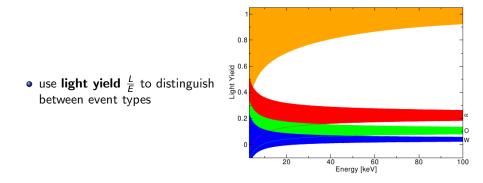
Blind CRESST Data Analysis

Nov 14th 11 / 16

Conclusion

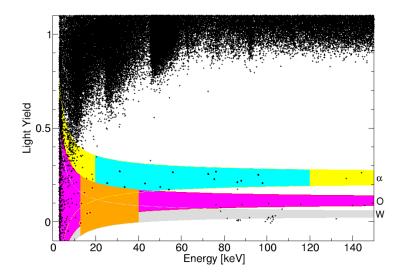
3D RMS Cut

Steps:


- automatic detection of periods of constant noise
- sort events within each period in energy bins
- remove same fraction of events within each bin

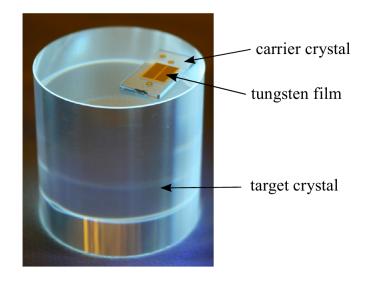
Advantages:

- Development of all relevant parameters on training set
- $\rightarrow\,$ Blind analysis possible
 - Common cut parameter for all detectors
- $\rightarrow\,$ Enables to systematically study of influence of RMS cut on physics results

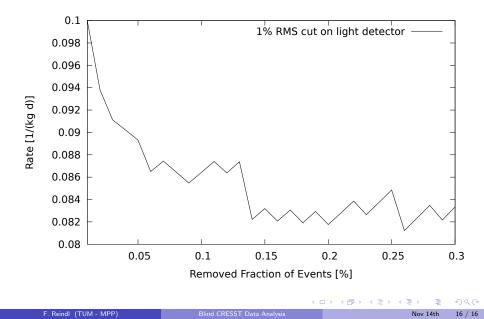

(日) (同) (三) (三)

Active Background Discrimination

(A) (□) (A) (□) (A)


Ligh Yield - Energy Plane incl. Acceptance Region

F. Reindl (TUM - MPP)


A (10) × A (10) × A (10)

Composite Target Crystal

F. Reindl (TUM - MPP)

RMS Sweep

