GeDET Project Review 2011

Burçin Dönmez for the GeDET Group

Max-Planck-Institut für Physik, München

December 20, 2011

- Motivation.
- Temperature dependence and axis determination for germanium detectors.
- GALATEA test stand.
- BEGe simulations.
- REGe background measurements.
- Aluminum as a background source.

GeDET Group

Director: Allen Caldwell Project Leaders: Iris Abt (GeDET), Béla Majorovits (GERDA) Postdocs: Fabiana Cossavella, Burçin Dönmez, Christopher O'Shaugnessy, Oliver Schulz PhD Students: Neslihan Becerici Schmidt, Sabine Irlbeck, Oleksandr Volynets Diploma Students: Florian Faulstich (05/11), Aaron Michel Group Engineers: Hans Seitz, Franz Stelzer Engineering: Sven Vogt

Many thanks to the Walter Kosmale, Reinhard Hoffmann, Alex Wimmer, Martin Burrack and the colleagues from electronic and mechanic departments.

GeDET Project

Development of segmented n-type Germanium detectors for future applications.

1 Ton initiative:

- Push further down sensitivity
- Normal or inverted hierarchy?
- 1 Ton of enriched Ge
- Background index of 10⁻⁵ counts/(kg y keV)

Study of properties of Ge detectors:

- Surface events induced by α and β
- Pulse shapes to extract position information and event topologies

■ New germanium detector geometries → Segmented BEGe detectors

Temperature dependence of pulse lengths

Experimental Setup:

- A cylindrical true-coaxial 18-fold segmented n-type detector.
- The detector mounted either inside a vacuum cryostat (changing T), K1, or submerged in a liquid nitrogen volume (fixed T), GII.
- The detector was operated temperatures at 77 K and between 95 K to 130 K.

Ref."Measurement of the temperature dependence of pulse lengths in an n-type germanium detector", I. Abt et al., Eur. Phys. J. Appl. Phys. 56 (2011)

10104.

GeDET Project Review 2011

イロト イポト イヨト イヨト

Temperature dependence of pulse lengths

Expectation:

- If $E \sim \text{const.} \rightarrow t_{rise} \propto \mu_{eff}^{-1}$.
- $\bullet \mu_{eff} \propto T^{-3/2}.$

Measurement:

- Boltzmann-like law: $t_{rise} \propto e^{-k/T}$.
- Is something else T-dependent?
- Temperature dependence of the rise time should be taken into account when pulses are simulated.
- The detector was stable up to temperatures of 130 K!

Ref. "Measurement of the temperature dependence of pulse lengths in an n-type germanium detector", I. Abt et al., Eur. Phys. J. Appl. Phys. 56 (2011)

10104.

Axes determination - Measurement

- The orientation of the axes of a detector is important for any analysis where pulse shapes are used.
- The difference of the mobility of charge carriers along the "slow" and "fast' axes is significant, longitudinal anisotropy.
- Also, the path of charge carriers not drifting parrallel to the crystal axes are bent, transverse anisotropy.

Azimuthal scan of the detector:

Ref. "Axes determination for segmented true-coaxial HPGe detectors", I. Abt et al., to be submitted.

Axes determination - Simulation

- Measured and expected occupancies for the 1.33 MeV (⁶⁰Co) line in the middle layer for the irradiation from the top.
- The resulting occupancies were evaluated by computing the quantity ϵ , $\epsilon = \sum_{i} \frac{(D_i - S_i)^2}{D_i^2}$.
- $\phi_{\langle 110 \rangle} = -1.8^{\circ} \pm 1.0^{\circ}$ (stat.) $\pm 6.0^{\circ}$ (syst.), from all layers.

Ref. "Axes determination for segmented true-coaxial HPGe detectors", I. Abt et al., to be submitted.

GeDET Project Review 2011

< ロ > < 同 > < 回 > < 回 >

GALATEA test stand

Scanning of detector surfaces with low energy γ , β , α and laser

- \rightarrow understanding of surface events
- \rightarrow investigation of dead layer properties

- First calibration data is collected in 2010 with 19-segment true-coaxial detector, SuSie.
- We are currently working on improving vacuum, electronics and grounding of the setup. ・ロト ・回ト ・ヨト ・ヨト

Burçin Dönmez (MPI für Physik)

Detector **IR-Shield**

Non-segmented BEGe detectors

Non-segmented BEGe detectors are implemented in MaGe framework based on GEANT4.

BEGe detectors have special field distributions due to their contact geometry. \rightarrow Improved PSA capabilities.

We will receive first BEGe detectors for GERDA Phase II in 2012.

Burçin Dönmez (MPI für Physik)

GeDET Project Review 2011

December 20, 2011 9 / 13

Segmented BEGe detectors - In progress

- Segmented BEGe detectors are modelled in Maxwell. → Field results are imported to MaGe for pulse shape analysis.
- Improve PSA capabilities and understand systematics of segmentation.
- Use mirror charges induced on segments to extract event topologies.
- Find optimum configuration for segments.

REGe background measurements

Monitoring natural background with two REGe detectors since the Fukushima incident.

Background from the decays of Aluminum

- Aluminum is commonly used to metalize (HPGe) detector surfaces.
- Great care is taken when selecting aluminum. → Cosmogenically produced ²⁶Al is not removed during the refinement process.
- The ²²Na, ²⁶Al, ²²⁶Ra and ²²⁸Th contaminations were simulated on the metallized surfaces.
- It is shown that with a single segment cut background levels from aluminum is low enough to keep background level 10⁻⁶ counts/(kg y keV).

Be careful when selecting aluminum, but it is not a show stopper!

Ref. "Aluminum as a source of background in low background experiments", B. Majorovits et al., NIMA 647 (2011) 39-45.

Investigation of systematic effects in HPGe detectors for future ton-scale experiments.

- Effect of temperature on pulse lengths are significant.
- Method developed for axes determination.
- BEGe pulse shape simulations are ongoing.
- Novel detector technologies are investigated.
- Understanding of background components.