Future Detectors

Detector R&D and Physics Studies for Linear Colliders

Frank Simon MPI for Physics & Excellence Cluster 'Universe'

MPP Project Review, December 2011

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

The Group

- The Core Group
 - PhD Students

Katja Seidel, Christian Soldner, Michal Tesar, Lars Weuste

- Diploma/Master Students
 Simon Pfau, Marco Szalay
- Scientist
 Ron Settles
- Group Leader
 Frank Simon
- Close collaboration with:
 - Belle / Belle-II Excellence Cluster funded:

Jeremy Dalseno, Andreas Moll, Kolja Prothmann; Student supervision: Christian Kiesling

• HLL & Minerva Group

Jelena Ninkovic, Christian Jendrysek, Hans-Günther Moser

The Context: Linear Collider Physics

- Large international community planning for a future e⁺e⁻ collider at the Terascale - Complementarity to the LHC
- The things we know:

Precision measurements of SM Processes:

- Top mass, width, asymmetry
- WW production Links to EW symmetry breaking
- High statistics measurements at the Z pole
- ..
- The things we expect:
 - Precision Higgs studies:
 - Higgs mass, branching ratios
 - Higgs coupling to top, heavy bosons
 - Higgs self-coupling (quite a challenge!)

The Context: Linear Collider Physics

- The things we definitely have not given up on yet: Physics beyond the Standard Model
 - A linear collider provides excellent sensitivity to weakly interacting states that are more difficult to discover at LHC: Direct production vs occurrence in decay chains of strongly interacting heavy new particles

For example: Distinguishing SUSY breaking mechanisms through precision spectroscopy

Also: Extended sensitivity to high-mass scales through precision measurements

Future Detectors MPI Project Review, December 2011

Frank Simon (fsimon@mpp.mpg.de)

4

The Context: Future Linear Colliders: ILC

Future Detectors MPI Project Review, December 2011

5

The Context: Future Linear Colliders: CLIC

- The Compact Linear Collider CLIC
 - 3 TeV center of mass energy (staged construction: ~ 500 GeV initially)
 - 2-beam acceleration using warm cavities (in development): 100 MV/m gradient

0.5 ns bunch to bunch spacing: Pile-up of hadronic background - 15 TeV per bunch train

6

Excellence Cluste

The Context: Future Linear Colliders: CLIC

- The Compact Linear Collider CLIC
 - 3 TeV center of mass energy (staged construction: ~ 500 GeV initially)
 - 2-beam acceleration using warm cavities (in development): 100 MV/m gradient

0.5 ns bunch to bunch spacing: Pile-up of hadronic background - 15 TeV per bunch train

6

Hadron Calorimetry at Linear Colliders

- Imaging calorimeters with high granularity crucial for precise jet energy reconstruction using particle flow
 - Requires the use of new technologies: small scintillator tiles with SiPM readout Extensively studied within CALICE collaboration
 MPP results being prepared for publication:
 - Energy resolution
 - Shower substructure
 - Calibration

- Particular challenges at CLIC: Very high energy, requires deep calorimeters
 - Use Tungsten absorbers to satisfy space constraints:

Requires extensive test beam program to evaluate - Carried out in 2010 and 2011

7

• Hadronic showers have a rich substructure:

Future Detectors MPI Project Review, December 2011

Frank Simon (fsimon@mpp.mpg.de)

A+Dratt

Future Detectors MPI Project Review, December 2011

Frank Simon (fsimon@mpp.mpg.de)

Importance of delayed component strongly depends on target nucleus

Sensitivity to time structure depends on the choice of active medium

A+ Ay>it

T3B - A Dedicated Detector to Study Timing

- Detector simulations rely on GEANT4 How well does G4 reproduce the time structure of hadronic showers?
- T3B 15 scintillator tiles with SiPM readout behind the CALICE WHCAL, DAQ with fast digitizers (USB oscilloscopes)
 0.8 ns resolution, 2.4 μs acquisition window

Data Analysis - Technique

- For each channel, a complete waveform with 3000 samples (800 ps /sample) is saved
- Waveform decomposed into individual photon signals, using averaged 1 p.e. signals
 - Average single photon signal taken from calibration runs between spills, refreshed every 5 minutes: Continuous automatic gain calibration

Future Detectors MPI Project Review, December 2011

- QGSP_BERT shows a pronounced tail of late energy depositions
- Data agrees better with QGSP_BERT_HP Reduced activity beyond 20 ns

Future Detectors MPI Project Review, December 2011

Future Detectors MPI Project Review, December 2011

Frank Simon (fsimon@mpp.mpg.de)

High precision neutron tracking or other means to suppress excessive late energy depositions necessary to describe observed time structure in T3B

- High precision neutron tracking or other means to suppress excessive
 late energy depositions necessary to describe observed time structure in T3B
- Simulations with QGSP_BERT give a pessimistic estimate of the duration of hadronic showers: Real timing performance of CLIC HCAL probably better!

Technology Development - Scintillators & SiPMs

 Currently transferring developed scintillator tile geometry for fiberless SiPM readout to mass production - Collaboration with ITEP, DESY, UHH

Studying performance of different coatings, different manufacturing techniques, scintillation material, ...

Timing studies with fast UV LED pulses

- Developed a scanning setup for precision measurement of SiPM properties: spacial features of light detection efficiency, cross talk, ...
- Detailed studies of environmental effects

Detector Development - Scintillators & SiPMs

10 21

10 13

10 ⁵

10 -3

*10 ⁻²

0.24

0.16

0.08

• Plan for 2012: Evaluate SiMPI photon sensor for calorimetry application

J. Ninkovic et al.

- Designs for small pixel devices exist and have been extensively simulated
 - Provides large dynamic range needed for calorimetry
 - Expect improved sensitivity and reduced noise compared to presently available photon sensors

density

30µm pitch size

8µm gap₀size

30µm thickness...4

Future Detectors MPI Project Review, December 2011

Physics Studies for CLIC CDR

- In 2011: Preparation of the Conceptual Design Report for CLIC Strong participation in Detector Volume: 1 Editor (Detector Concepts), 2 out of 7 benchmark analyses performed in the group
 - CLIC CDR available at http://lcd.web.cern.ch/lcd/CDR/CDR.html Signatures are invited!

Physics Studies for CLIC CDR

- In 2011: Preparation of the Conceptual Design Report for CLIC Strong participation in Detector Volume: 1 Editor (Detector Concepts), 2 out of 7 benchmark analyses performed in the group
 - CLIC CDR available at http://lcd.web.cern.ch/lcd/CDR/CDR.html Signatures are invited!

The goal of the benchmark studies: evaluate the performance for rather generic physics processes

The main challenges: Pile-Up of hadronic background, luminosity spectrum

Studies at MPP:

- Right-squark production and decay at 3 TeV, squark mass 1.12 TeV
- Top quark pair production at 500 GeV, direct comparison to ILC studies

Right-Squark Production

- Light-flavored squarks: typically among the heaviest SUSY particles - Jets + missing Energy as a generic new physics signature
 - Simple decay topology for right squarks:

missing energy

mass 1.12 TeV, cross section: 1.45 fb

Extensive study of jet finders to reduce background effects:

Use techniques developed for hadron colliders -

Adopted as general solution for all CLIC physics studies

Right-Squarks - Analysis

- Main analysis challenges:
 - Suppression of SM background (4 orders of magnitude larger cross section than signal)
 - Jet finding in presence of background
- Strategy: Missing transverse momentum cut of 600 GeV, Boosted Decision Tree using jet and event shape information
- Mass measurement: $M_C = \sqrt{2(E_1E_2 + \vec{p_1} \cdot \vec{p_2})}$ (independent of s)

Mass determined with template fit: Resolution: 6 GeV (stat.), 0.52% for 2 ab⁻¹

Systematics from luminosity spectrum determination negligible: 0.3 GeV (s independence of mass extraction!)

Future Detectors MPI Project Review, December 2011

Top Pair Production at 500 GeV

- Top mass and width a classic Standard Model measurement at Linear Colliders
 - Multi-jet final state at ILC energies

Reconstruction of invariant mass from decay products

- Reconstruction of intermediate W bosons
- Kinematic fit to improve masses

Key detector performance aspects:

- Mass reconstruction in a multi-jet final state for low energy jets
- Flavor tagging

In addition: Evaluation of the impact of CLIC beam conditions at 500 GeV compared to those of the ILC

Top Pairs - Results

Unbinned maximum likelihood fit of mass distributions

Statistical precision for 100 fb⁻¹: 80 MeV all hadronic (220 MeV on width) 90 MeV semi-leptonic (260 MeV on width)

Slightly better than ILC - ILD LOI mass resolution (0.11 GeV in all-hadronic final state)

Caveat: Invariant mass theoretically not well defined: sizable theory uncertainty! Ongoing theoretical work - A.Hoang et al.

Experimental alternative: Threshold scan, feasibility at CLIC to be studied

MPI Project Review, December 2011

Summary & Outlook

- Intense preparations for future linear colliders: ILC, CLIC
- MPI involvement in:
 - Detector R&D Highly granular calorimeters, highly visible contributions
 - Hadronic shower physics, advanced algorithms for energy reconstruction,...
 - Scintillator tiles, silicon photomultipliers
 - Physics studies Performance studies for future experiments
- The road ahead:
 - Completion of CLIC CDR, ILC TDR in 2012 In time for European strategy update
 - No firm decisions yet, but the world of particle physics is changing fast at present: Promising signs in Japan with a kick-off meeting with highest political participation last week, increased linear collider activities at CERN

Backup

CLIC Detector Benchmark Studies CLIC CDR Review

Frank Simon (fsimon@mpp.mpg.de)

Conditions at CLIC

• The bunch structure at CLIC

Future Detectors MPI Project Review, December 2011

Frank Simon (fsimon@mpp.mpg.de)

Conditions at CLIC

• The bunch structure at CLIC

0.5 ns bunch to bunch spacing312 bunches per train

156 ns long bunch trains

50 Hz repetition rate

precise time-stamping required

power pulsing of electronics possible

Beamstrahlung

Beamstrahlung driven by energy and focusing: mean bunch $\Delta E/E \sim 29\%$

- coherent e⁺e⁻ pairs: 3.8 x 10⁸ / bunch crossing
- incoherent e⁺e⁻ pairs: 3.0 x 10⁵ / bunch crossing
- $\gamma\gamma \rightarrow$ hadrons interactions: 3.2 / bunch crossing

Future Detectors MPI Project Review, December 2011

Conditions at CLIC: Beamstrahlung Details

- Coherent e⁺e⁻ pairs with angles < 10 mrad
- Crossing angle at CLIC: 20 mrad beam pipe opening angle ± 10 mrad for outgoing beam: coherent pairs disappear in beampipe
- incoherent pairs: swept away by solenoidal field, constrain innermost radius of vertex detector

Future Detectors MPI Project Review, December 2011

Conditions at CLIC: Beamstrahlung Details

- $\gamma\gamma \rightarrow$ hadrons: ~ 3.2 events / bx,
 - ~ 28 ch. particles in detector acceptance
 - ~ 60 GeV energy
 - ⇒ 15 TeV dumped in detector during bunch train, forward peaked
 Requires precise time stamping and
 - clever event reconstruction

Future Detectors

MPI Project Review, December 2011

- Coherent e⁺e⁻ pairs with angles < 10 mrad
- Crossing angle at CLIC: 20 mrad beam pipe opening angle ± 10 mrad for outgoing beam:

coherent pairs disappear in beampipe

• incoherent pairs: swept away by solenoidal field, constrain innermost radius of vertex detector

23

Detector Modifications at 500 GeV

- The background conditions at 500 GeV are substantially less severe than at 3 TeV
- Lower rate of incoherent pairs $(8 \times 10^4/BX \text{ vs } 3 \times 10^5/BX)$: Allows a reduction of the beam pipe radius at the IP, and a smaller radius of the vertex detector (25 mm vs 31 mm): Improved flavor tagging for lower jet energies

General Considerations

- Requirements for CLIC detectors driven by physics:
 - Excellent resolution for multi-jet final states
 - Hermetic coverage for missing energy measurements
 - Precise track reconstruction
 - Excellent flavor tagging: b & c identification and separation
- These requirements are satisfied by the validated ILC detector concepts ILD and SID
 - Detector systems with large solenoid, event reconstruction based on Particle Flow
- Modifications are necessary to account for CLIC-specific issues:
 - Higher energy: Jets up to the TeV region
 - Higher backgrounds due to high energy and small beam size, combined with high bunch crossing rate

CLIC Detectors - Main Features

Future Detectors MPI Project Review, December 2011

Frank Simon (fsimon@mpp.mpg.de)

Overview: The CLIC Detector Concepts

Si pixel vertex detector Si strip inner tracker

CLIC_ILD: TPC main tracker CLIC_SID: Si strip main tracker

SiW electromagnetic calorimeter

Hadronic calorimeter with tungsten absorbers in barrel, steel in endcaps Active medium: Scintillator tiles with SiPM readout currently studied, digital calorimeter with gas detectors also an option

All inside large solenoid

Future Detectors MPI Project Review, December 2011

Changes to ILC Detector Concepts

- The overall detector philosophy, and the general design remains unchanged with respect to the ILC concepts
 - Still, many changes to address CLIC-specific issues in both CLIC_ILD and CLIC_SID:

CLIC Event Reconstruction

- Event reconstruction technique: Particle Flow
 - Relies on imaging capabilities of calorimeters:
 Separation of particle showers to reconstruct each particle in an event
 Make optimal use of all available detector information
 (tracking & calorimetry)

CLIC Event Reconstruction

- Event reconstruction technique: Particle Flow
 - Relies on imaging capabilities of calorimeters:

Separation of particle showers to reconstruct each particle in an event Make optimal use of all available detector information (tracking & calorimetry)

PFA Requirements:

The success of PFA is decided in the calorimeters: Development of novel

technologies for high granularity:

Future Detectors MPI Project Review, December 2011

The Key Reconstruction Challenge: Backgrounds

- Background conditions at CLIC are challenging
 - In particular: High rate of $\gamma\gamma \rightarrow$ hadrons processes

NB: This background scales with energy and luminosity, and is not a CLIC-specific issue ... but: The short bunch-to-bunch spacing of 0.5 ns leads to a pile-up of background events

The Key Reconstruction Challenge: Backgrounds

- Background conditions at CLIC are challenging
 - In particular: High rate of $\gamma\gamma \rightarrow$ hadrons processes

NB: This background scales with energy and luminosity, and is not a CLIC-specific issue ... but: The short bunch-to-bunch spacing of 0.5 ns leads to a pile-up of background events

- The way to reject these types of background: Timing
 - Match the time of all reconstructed physics objects with the time of the event
 - Assume ~ 10 ns timing in vertex detectors and Si trackers
 - Key detectors: Calorimeters with ~1 ns cluster timing
 - Long integration time in the HCAL to account for shower time structure
 - More stringent cut on low pt particles (more likely to be background)

Good time resolution mandatory for all CLIC detector subsystems, most critical in the calorimeters!

Background Removal

• Beam related background from $\gamma\gamma \rightarrow$ hadrons processes adds significant energy to events, in particular in the forward region - simulation chain fully validated

1 TeV Z \rightarrow uds

Future Detectors MPI Project Review, December 2011

Frank Simon (fsimon@mpp.mpg.de)

Background Removal

Beam related background from γγ → hadrons processes adds significant energy to events, in particular in the forward region - simulation chain fully validated
 1 TeV Z → uds + γγ → hadrons background

~ 60 BX, 1.4 TeV

Future Detectors MPI Project Review, December 2011

Background Removal

Beam related background from γγ → hadrons processes adds significant energy to events, in particular in the forward region - simulation chain fully validated
 1 TeV Z → uds + γγ → hadrons background

~ 60 BX, 1.4 TeV

realistic timing assumptions: 200 GeV

• Timing cuts reduce the impact of background significantly

Background Reduction in Physics Analysis

• Use of specific jet algorithms, momentum and geometry cuts, ... are studied to obtain best possible precision - Depends on physics channel

Example: Squark pair production Signature: 2 jets + missing energy - susceptible to hadronic background!

Background Reduction in Physics Analysis

• Use of specific jet algorithms, momentum and geometry cuts, ... are studied to obtain best possible precision - Depends on physics channel

Example: Squark pair production Signature: 2 jets + missing energy - susceptible to hadronic background!

Jet finding can reduce background effects considerably: Choose the right finder / metric!

Future Detectors MPI Project Review, December 2011

32

Right Squarks - Results

Mass determined with a template fit - Generator-level (including hadronization) simulations with various different squark masses, stat. errors from toy MC

Observable	Result	Generator value	
Averaged right-squark mass	$1127.9~\text{GeV}\pm5.9~\text{GeV}$	1123.7 GeV	0.52%
Combined cross section	$1.51 \text{ fb} \pm 0.07 \text{ fb}$	1.47 fb	4.6 %

