

ATLAS Project Review

Mike Flowerdew on behalf of the MPP ATLAS group

22 2222 222

Outline

- ATLAS and the LHC in 2011
- Detector monitoring and performance activities
 - Data Quality and detector operations
 - Muon Spectrometer
 - Hadronic calibration
- Physics analysis @ MPP
 - Standard Model physics (including top quark)
 - SM and MSSM Higgs searches
 - Supersymmetry
- High luminosity upgrade activities
 - Pixel tracker, hadronic endcap and muon spectrometer
- Summary and conclusions

ATLAS

• Multi-purpose 4π detector design

- For jets, b-jets electrons, photons, muons, tau leptons and missing E_T (MET) from proton-proton and heavy ion collisions

MPP in ATLAS

Typical low β^* collision with 20 reconstructed primary vertices

- 2011 was an incredible data-taking year for the LHC
- Instantaneous luminosities up to 3.65×10³³ cm⁻² s⁻¹
 - Serious challenges with pile-up
- Also heavy ion collisions at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

The ATLAS MPP group

H Abramovitz, T Barillari, S Bethke, B Bittner, J Bronner, D Capriotti, G Compostella, G Cortiana, J Dubbert, M Flowerdew, C delle Fratte, P Giovannini, M Goblirsch-Kolb, P Haefner, A Jantsch, A Kiryunin, S Kluth, O Kortner, S Kortner, S Kotov, H Kroha, J v. Loeben, A Manfredini, A Macchiolo, S Menke, H-G Moser, M Nagel, R Nisius, H Oberlack, G Pospelov, C Pahl, I Potrap, R Richter, R Sandstrom, D Salihagic, P Schacht, H v. d. Schmitt, P Schwegler, R Seuster, S Stern, S Stonjek, M Vanadia, P Weigell, D Zanzi, V Zhuravlov

Staff/postdocs, students

... plus a **huge** thanks to the MPP technical department!

Coordinating roles in 2011:

Speakers' Committee chair: **Hubert Kroha** Computing coordinator: **Hans von der Schmitt Higgs working group convenor: Sandra Kortner** Muon combined performance WG convenor: **Oliver Kortner**

Reconstruction coordinator: **Rolf Seuster** → Software coordinator in 2012 SCT data quality coordinator and Run manager: **Petra Haefner** Top quark mass subgroup convenor: **Giorgio Cortiana**

EXPERIMENTAL OPERATIONS AND PERFORMANCE

Data Quality and detector operations

- A Oberlack, S Stern, M Vanadia Data Quality describes how well the detector is working, assessed online and offline
 - Originally green / red subdetector flags
 - Now we use **defect monitoring** for additional flexibility
 - All detectors operating well, with high efficiency
 - Thanks in part to years of design, construction and commissioning efforts, not least by workers at MPP

Inner Tracking Detectors			Calorimeters			Muon Detectors			Magnets			
Pixel	SCT	TRT	LAr EM	LAr HAD	LAr FWD	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
99.8	99.6	99.2	97.5	99.2	99.5	99.2	99.4	98.8	99.4	99.1	99.8	99.3
Luminosity weighted relative detector uptime and good quality data delivery during 2011 stable beams in pp collisions at vs=7 TeV between												

March 13th and October 30th (in %), after the summer 2011 reprocessing campaign

- MPP contributions to DQ of SCT, HEC and MDT
 - SCT Data Quality
 - MDT Data Quality (including for calibration)
 - HEC low voltage hardware/software and local expert coordination

T Barillari, P Haefner,

Computing

G Compostella, S Kluth, H vd Schmitt, R Seuster. Tier 0 (CERN): prompt and post-calibration data reconstruction

- Results distributed to Tier 1 and Tier 2 sites
 - Re-reconstruction with new software releases/calibrations; physics analysis
- The Grid has ~ 80k CPU cores and ~20 PB storage

Hadronic calibration

Major MPP contributions

- T Barillari, A Jantsch, T Barillari, A Jantsch, G Pospelov, A Kinyunin, S Menke D Salihagic, S Menke • Topological clusters now used as standard for jets in ATLAS
 - 3D energy blobs
 - Stable particle picture of a jet
 - Calibration **stable** with increasing pile-up

- Local Hadronic Calibration now a standard for jets and MET
 - Modular identification and calibration of energy deposits

PHYSICS ANALYSIS

For (lots) more information, please visit https://twiki.cern.ch/twiki/bin/view/AtlasPublic

19th December 2011

Michael Flowerdew (MPP München)

Standard Model overview

SM electroweak physics

- D Capriotti, M Goblirsch-D Capriotti, M Goblirsch-Kolb, M Vanadia, O Kortner, S Kolb, M Vanadia, A Kroha S Kortner, H Kroha • **Inclusive W and Z** production measured with 2010 and 2011 data
 - Also **W+jets**, W+b and W+c
 - MPP contributions to muon and tau channels
 - Demonstrates **detector performance**
 - Tests theoretical QCD predictions

$ZZ \rightarrow 41$ cross section measurement M Goblirsch-Kolb, O Kortner, H Kroha

- 4e, 4µ and 2e2µ final states
- Main **background** to $H \rightarrow ZZ \rightarrow 41$
- Sensitive to anomalous triple gauge couplings
 - **No indications of anomalies** with 1 fb⁻¹

Michael Flowerdew (MPP München)

Top quark overview

- The **top quark** plays a central role in LHC physics
 - Mass is a **fundamental parameter** of the Standard Model
 - Unbiased constraint on Electroweak symmetry breaking
 - New physics coupled to 3rd generation
 - Important **background** to direct searches

- Many measurements made so far by ATLAS
 - Top quark **production**
 - Including single top, resonance and 4th generation searches
 - Different decay channels
 - e.g. searches for anomalous decays
 - Top properties
 - Mass, charge, polarisation

 $\sigma(t\bar{t}) = 171 \text{ pb} \pm 20 \text{ (stat)} \pm 14 \text{ (syst)}_{-6}^{+8} \text{ (lumi)}$ arXiv:1108.3699, submitted to Phys. Lett. B

Michael Flowerdew (MPP München)

Top quark mass in the semileptonic channel

- Company Manusch, Skur Manusch,
 - Major MPP contribution
 - Use reconstructed jets to measure the top mass

• This ratio **minimises systematic uncertainties**, eg from jet energy scale (JES):

$$R_{32} = \frac{m_t^{reco}}{m_W^{reco}} = \frac{m(\text{jet, jet, bjet})}{m(\text{jet, jet})}$$

- 3× reduced JES systematic
- Analysis will be improved further:
 - Multi-dimensional templates to constrain b-jet energy scale
 - Improved W/top jet association

Top mass in the semileptonic channel

First ATLAS top quark mass result!

Strong MPP contribution

19th December 2011

- Semileptonic top mass summary
 - Huge improvements from 2010-2011
 - Already much closer to Tevatron precision

Top quark mass: fully hadronic channel

- The fully hadronic mode is challenging to reconstruct
 6 jets, no leptons or MET!
- MC feasibility study shows potential for a mass measurement
 - $-\sqrt{s} = 10$ TeV simulation
 - 200 pb⁻¹ assumed luminosity
- Gaussian + polynomial fit to tri-jet mass
 - Systematic uncertainty of 7.3 GeV, dominated by jet energy scale

Standard Model Higgs overview

- Critical part of the Standard Model
- Significant reach with 5fb⁻¹ of LHC data
- Multi-channel discovery strategy covers the full mass range

H→bb

H→WW

 $H \rightarrow ZZ$

Observed low mass excess

- Multiple channels contribute to an excess observed near 125 GeV
 - Including two with direct MPP involvement
- Significances with look-elsewhere effects (114-145 GeV):
 - 2.5σ (ATLAS)
 - **1.9**σ (CMS)
- A fluke? Or a new particle?
 - Only more data will tell

Events / 1 GeV

700

600

500

400

300

200

ATLAS Preliminary

100 Data 2011,√s = 7 TeV,

120

110

🔶 Data

Ldt = 4.9 fb

140

130

MC m_=130 GeV, 1xSM .

150

Total background (Fit)

Н→үү

m_{γγ} [GeV]

160

4 muon event, m_{ll} = 24.6 GeV and 89.7 GeV, m_{4l} = 124.6 GeV

19th December 2011

MPP Higgs activities

Standard Model **Higgs searches**

- $H \rightarrow WW(*) \rightarrow l_V l_V$
 - S Stern, S Kortner, - Muon selection, QCD background and analysis developments R Sandström
- $H \rightarrow WW(*) \rightarrow l\nu qq$
 - Background estimation and analysis M Goblirsch. developments
- $H \rightarrow Z Z^{(*)} \rightarrow 41$
- Kolb, O Kortner, Tkroha - Optimisation of the muon selection, increasing acceptance
- $H \rightarrow \tau_h \tau_h$
 - New analysis for Moriond 2012
 - Hadronic tau trigger and selection

Combination of $H/A \rightarrow \tau \tau$ channels in the MSSM

J Bronner, S Kortner

SKorther

Supersymmetric (MSSM) **Higgs searches**

- A Manfredini, D Zanzi, Analysis optimisation and reconstruction performance
 - $H/A \rightarrow \mu\mu$

 $H/A \rightarrow \tau\tau$

- New analysis for Moriond 2012
- Full analysis chain

Supersymmetry overview

A natural		ATLAS SUSY Searches* - 95% CL Lower Limits (Status: Dec. 2011)
extension to the		
Chandland Madal	$MSUGRA/CMSSM: 0\text{-lep} + j's + E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [arXiv:1109.6572] 950 GeV $\widetilde{q} = \widetilde{g}$ mass ATLAS
Standard Model	MSUGRA/CMSSM : 1-lep + j's + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [arXiv:1109.6606] 820 GeV q = g mass Preliminary
Diverse predictions of	MSUGRA/CMSSM : multijets + $E_{T,miss}$	$L=1.3 \text{ fb}^{-1}(2011) [arXiv:1110.2299] \qquad 680 \text{ GeV} \widetilde{\text{g}} \text{ mc} \text{ ss} (\text{for } m(\widetilde{\text{q}}) = 2m(\widetilde{\text{g}}))$
final state particles	Simpl. mod. : 0-lep + j's + $E_{T,miss}$	<u>L=1.0 fb⁻¹ (2011) [arXiv:1109.6572]</u> 1.075 TeV $\tilde{q} = \tilde{g}$ mass (light $\tilde{\chi}_1^{(0)}$)
1	Simpl. mod. : 0-lep + j's + $E_{T,miss}$	$L=1.0 \text{ fb}^{-1} (2011) [arXiv:1109.6572] 875 \text{ GeV} \widetilde{G} \text{ mass } (m(\widetilde{g}) < 2 \text{ TeV}, \text{ light}_{\widetilde{\chi}_1}^{(2)})$
0011 1	Simpl. mod. : 0-lep + j's + $E_{T,miss}$	$L=1.0 \text{ fb}^{-1} (2011) [arXiv:1109.6572] 700 \text{ GeV} \widetilde{\text{g}} \text{ m} \text{ ass } (m(\widetilde{\text{q}}) < 2 \text{ TeV}, \text{ light}_{\widetilde{\chi}_{1}}^{-1})$
2011 searches	Simpl. mod. : 0-lep + J'S + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-155] 700 GeV \widetilde{q} m ass $(m(\widetilde{g}) < 2 \text{ TeV}, m(\widetilde{\chi_1}) < 200 \text{ GeV})$
cover many of	Simpl. mod. : 0-lep + j s + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-155] 650 GeV \tilde{g} mass $(m(\tilde{q}) < 2 \text{ TeV}, m(\tilde{\chi}_1) < 200 \text{ GeV})$
the second	Simpl. mod. $(g \rightarrow qq\chi^{-})$: 1-lep + j's + $E_{T,miss}$	$L=1.0 \text{ fb}^{-1} (2011) [arXiv:1109.6606] \qquad 600 \text{ GeV} [] mass (m(\chi_1^-) < 200 \text{ GeV}, \Delta m(\chi_1^-, \chi_1^-) / \Delta m(g, \chi_1^-) > 1/2)$
tnese:	Simpli mod. : 0-lep + 0-jets + j s + $E_{T,miss}$	$L=0.83 \text{ (b)} < 600 \text{ GeV}, \text{ light}_{\chi_1}$
- 0-2 leptons	Simpli mod. $(g \rightarrow tt\chi_1)$: 1-lep + b-jets + j s + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-130] 540 GeV g mass ($m(\chi_1) < 80$ GeV)
- 0-8 jets	Simpl. mod. $(D_1 \rightarrow D\chi_1) : 2 D$ -jets + $E_{T,miss}$	<u>L=2.05 fb (2011) [Preliminary]</u> 390 GeV b mass $(m(T_{L_1}) < 60 \text{ GeV})$
- Photons	Simple mod. $(\chi_1 \chi_2 \rightarrow 3i \chi_1)$. 2-lep SS + $E_{T,miss}$ GMSB : 2-lep OS + E_{-}	$L=1.0 \text{ fb}^{-1}(2011) [arXiv:1110.6189] \qquad \chi_1 \text{ mass (light } \chi_1, m(1) = \frac{1}{2}(m(\chi_1) + m(\chi_2)))$
- b-iets	GGM + Simpl. model : yy + E	$L=1.0 \text{ fb}^{-1}(2011) \text{ [ATLAS-CONF-2011-156]} 810 \text{ GeV} \text{g flass (corresp. to A < 35 feV, tarp < 35)}$
- Taus	$ au_{,miss}$ GMSB : stable $ ilde{ au}$	$\frac{136 \text{ GeV}}{12437 \text{ pb}^{-1}(2010) [106.8495]} \tilde{\tau} \text{ mass}$
- jj and eµ resonances	AMSB : long-lived $\widetilde{\chi}_1^{\pm}$	^{92 GeV} L=1.0 fb ⁻¹ (2011) [Prei] $\tilde{\chi}_{1}^{\pm}$ mass (0.5 < $\tau(\tilde{\chi}_{1}^{\pm})$ < 2 ns)
- Long-lived particles	Stable massive particles : R-hadrons	L=34 pb ⁻¹ (2010) [arXiv:1103.1984] 562 GeV g mass
8 F F	Stable massive particles : R-hadrons	L=34 pb ⁻¹ (2010) [arXiv:1103.1984] 294 GeV b mass
	Stable massive particles : R-hadrons	L=34 pb ⁻¹ (2010) [arXiv:1103.1984] 309 GeV t mass
Nothing found	Hypercolour scalar gluons : 4 jets, $m_{\rm ij} \approx m_{\rm kl}$	$\frac{185 \text{ GeV}}{\text{L=34 pb}^{-1} (2010) [arXiv:1110.2693]} \text{ sgluon mass (excl: } m_{sg} < 100 \text{ GeV}, m_{sg} \approx 140 \pm 3 \text{ GeV})$
vet	RPV : high-mass eµ	L=1.1 fb ⁻¹ (2011) [arXiv:1109.3089] 1.32 TeV $\tilde{\nu}_{\tau}$ mass (λ_{311}^{2} =0.10, λ_{312} =0.05)
ycc	Bilinear RPV : 1-lep + j's + $E_{T,miss}$	$L=1.0 \text{ fb}^{-1}$ (2011) [arXiv:1109.6606] 760 GeV $\widetilde{q} = \widetilde{g}$ mass ($c\tau_{LSP} < 15 \text{ mm}$)
but much		10 ⁻ 1 10 Mass socia (Ta)//
mono io mlomo d	*Only a selection of the available results leading to mass limits	s shown
more is planned		

Michael Flowerdew (MPP München)

for 2012!

19th December 2011

M.F. Lowerdew, M.F. L

- MPP contributions in 2010/11 to searches without leptons
 - 2-4 jets + MET
 - 6-8 jets + MET
 - Exclusion limits at/approaching 1 TeV

- For 2012, **focus is shifting** to channels requiring more luminosity
 - Direct gaugino (weak) production with 2/3 leptons
 - 4+ lepton final states

Other ATLAS searches

		ATLAS Exotics Searches* - 95% CL Lower Limits (Status: Dec. 2011)
	Large ED (ADD) : monojet	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-096] 3.2 TeV M_D (δ =2)
	Large ED (ADD) : diphoton	L=2.1 fb ⁻¹ (2011) [Preliminary] 3.0 TeV M_S (GRW cut-off) ATLAS
	$UED: \gamma\gamma + E_{\tau,miss}$	L=1.1 fb ⁻¹ (2011) [arXiv:1111.4116] 1.23 TeV Compact. scale 1/R (SPS8) Preliminary
	RS with $k/M_{Pl} = 0.1$: $\gamma\gamma$, ee, $\mu\mu$ combined, $m_{\gamma\gamma}$, μ	L=1.1-2.1 fb ⁻¹ (2011) [Preliminary, arXiv:1108.1582] 1.95 TeV Graviton mass
TT / 11 1	RS with $k/M_{Pl} = 0.1$: ZZ resonance, m_{IIII}	$L=1.0 \text{ fb}^{-1} (2011) [ATLAS-CONF-2011-144] 575 \text{ GeV} Graviton mass \qquad Ldt = (0.03 - 2.1) \text{ fb}^{-1}$
Extra dimensions —	RS with $g_{\text{gradKK}}/g_{\text{s}} = -0.20$: $H_{\text{T}} + E_{T,\text{miss}}$	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-123] 840 GeV KK gluon mass
	Quantum black hole (QBH) : m_{dijet} , $F(\chi)$	L=36 pb ⁻¹ (2010) [arXiv:1103.3864] 3.67 TeV M_D (δ =6)
	\overrightarrow{L} QBH : High-mass σ_{t+x}	L=33 pb ⁻¹ (2010) [ATLAS-CONF-2011-070] 2.35 TeV M _D
	ADD BH ($M_{TH}/M_{D}=3$) : multijet, Σp_{τ} , N_{iets}	L=35 pb ⁻¹ (2010) [ATLAS-CONF-2011-068] 1.37 TeV M _D (δ=6)
	ADD BH $(M_{TH}/M_D=3)$: SS dimuon, $N_{ch, part}$	L=1.3 fb ⁻¹ (2011) [arXiv:1111.0080] 1.25 TeV M_D (δ =6)
	ADD BH ($M_{TH}/M_D=3$) : leptons + jets, Σp_T	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-147] 1.5 TeV M_{\odot} (δ =6)
Contact interactions	qqqq contact interaction : $F_{\gamma}(m_{\text{dijet}})$	$L=36 \text{ pb}^{-1}(2010) [arXiv:1103.3864 (Bayesian limit)]$ 6.7 TeV A
	\bigcirc qqll contact interaction : ee, $\mu\mu$ combined, m_{μ}	L=1.1-1.2 fb ⁻¹ (2011) [Preliminary] 10.2 TeV Λ (constructive int.)
171	SSM : m _{ee/uu}	L=1.1-1.2 fb ⁻¹ (2011) [arXiv:1108.1582] 1.83 TeV Z' mass
v —	SSM : m _{T.e/u}	L=1.0 fb ⁻¹ (2011) [arXiv:1108.1316] 2.15 TeV W' mass
· · · · · · · · · · · · · · · · · · ·	Scalar LQ pairs (β =1) : kin. vars. in eejj, evjj	L=1.0 fb ⁻¹ (2011) [Preliminary] 660 GeV 1 st gen. LQ mass
Leptoquarks 🦰	Scalar LQ pairs (β =1) : kin. vars. in $\mu\mu$ jj, $\mu\nu$ jj	L=35 pb ⁻¹ (2010) [arXiv:1104.4481] 422 GeV 2 nd gen. LQ mass
	4^{th} generation : coll. mass in $Q_1 \overline{Q}_1 \rightarrow W q W q$	L=37 pb ⁻¹ (2010) [CONF-2011-022] ²⁷⁰ GeV Q ₄ mass
Ath concration	4 th generation : d $d_4 \rightarrow$ WtWt (2-lep SS)	L=34 pb ⁻¹ (2010) [1108.0366] 290 GeV d ₄ mass
4 generation	$T\overline{T}_{exo}$ 4^{th} $t\overline{t} + A_0A_0^4$: 1-lep + jets + E_{T}_{miss}	L=1.0 fb ⁻¹ (2011) [arXiv:1109.4725] 420 GeV T mass ($m(A_{c}) < 140 \text{ GeV}$)
ſ	Techni-hadrons : dilepton, mee/uu	L=1.1-1.2 fb ⁻¹ (2011) [CONF-2011-125] 470 GeV ρ_{-}/ω_{T} mass $(m(\rho_{-}/\omega_{T}) - m(\pi_{T}) = 100 \text{ GeV})$
	Major. neutr. (LRSM, no mixing) : 2-lep + jet	S L=34 pb ⁻¹ (2010) [ATLAS-CONF-2011-115] 780 GeV N mass $(m(W_{e}) = 1 \text{ TeV})$
	Major. neutr. (LRSM, no mixing) : 2-lep + jet	S L=34 pb ⁻¹ (2010) [ATLAS-CONF-2011-115] 1.350 TeV W _B mass (230 < m(N) < 700 GeV)
Technicolor, a'.	$H_{L}^{\pm\pm}$ (DY prod., BR($H^{\pm} \rightarrow \mu\mu$)=1) : m	L=1.6 fb ⁻¹ (2011) [CONF-2011-127] 375 GeV H ^{±±} mass
	Excited quarks : γ -jet resonance, $m_{\text{vist}}^{\mu\mu(\text{inte-sign})}$	L=2.1 fb ⁻¹ (2011) [Preliminary] 2.46 TeV q [*] mass
exotic quarks,	Excited quarks : dijet resonance, m	L=1.0 fb ⁻¹ (2011) [arXiv:1108.6311] 2.99 TeV q [*] mass
gluons etc	Axigluons : m _{dijet}	L=1.0 fb ⁻¹ (2011) [arXiv:1108.6311] 3.32 TeV Axigluon mass
8-20-20-20-20-20-20-20-20-20-20-20-20-20-	Color octet scalar : m _{dijet}	L=1.0 fb ⁻¹ (2011) [arXiv:1108.6311] 1.92 TeV Scalar resonance mass
	Vector-like quark : CC, mixing	L=1.0 fb ⁻¹ (2011) [Preliminary] 900 GeV Q mass (coupling $\kappa_{nO} = \nu/m_O$)
	Vector-like quark : NC,m	L=1.0 fb ⁻¹ (2011) [Preliminary] 760 GeV Q mass (coupling $\kappa_{\alpha\Omega} = v/m_{\Omega}$)
		10^{-1} 1 10^{-1}
		Mass scale [Te\/]
	*Only a selection of the available results leading to mass limit	s shown

UPGRADE

19th December 2011

The LHC upgrades

- Three-phase upgrade plan for ATLAS
 - Accelerator upgrades to provide higher energies and luminosities
 - Gradual **replacement/upgrade** of detector components to cope with ever-increasing radiation and occupancy levels

Pixel upgrade

A Macchiolo,

1 MeV equivalent fluence for Phase II tracker

HEC upgrade

Neutron dose for 1 year LHC HL-LHC ~ 10×LHC + factor 10 safety factor

- T Barnuar, ck, M Nab H Oberlack, P Schacht, G Pospelov, P Schacht, G Nenke S Menke • Phase II upgrade:
 - Support electronics need replacing
 - MPP projects

Neutrons 2×10 ¹⁵ n cm ⁻²	Protons 2×10 ¹⁴ p cm ⁻²
-1%	-11%
-3%	-10%
-24%	-21%
	Neutrons 2×10 ¹⁵ n cm ⁻² -1% -3% -24%

- **Cold electronics**: pre-amplifier technologies under test
 - Si CMOS FETs most promising for performance, availabliliy and price
- Low voltage power supply (LV PS) control units: Tests started

High luminosity studies for the upgrade

- Mini-modules exposed to test beams at Protvino
 - Three endcap systems (EMEC, HEC, FCal)
 - High intensity 50 GeV protons
- HEC operation in HL-LHC demonstrated up to $L = 8.3 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
 - HEC and EMEC hardware OK!

- FCal needs smaller gap sizes $(250 \ \mu m \rightarrow 100 \ \mu m)$
 - MET performance degrades with FCal only partially functional
 - Fake MET is a problem at high luminosity!

B Bittner, J Dubbert, O Kortner, B Bittner, A Manfredini, Kortner, A Manfredini, Kortner, P Schwegler, Richter, P Schwegler, Richter, H Kroha

- **Phase I** upgrades to small wheel:
 - Small diameter drift tubes (sMDTs)
 - MPP proposal
 - 96 sMDTs to be made in collaboration with other institutes (2013-16)
 - Trigger chambers

• Phase II upgrades:

- Small wheel trigger upgrade
- Use (s)MDTs in Level 1 trigger MPP proposal

Background counting rates [Hz cm⁻²] at design luminosity and for HL-LHC Current MDT rate limit: **500 Hz cm⁻²**

Small MDT prototype tests

19th December 2011

Level 1 muon trigger and readout electronics

- MDT-based L1 muon trigger concept:
 - Fast track segment finder on new frontend boards

New (s)MDT readout electronics chain

Front-end ASD chip prototype

FINAL REMARKS

19th December 2011

Michael Flowerdew (MPP München

Machine planning for 2012

Last year before the long 2013-14 shutdown
Luminosity is the priority

Assumed beam parameters (decision in Feb @ Chamonix)

	2012	2011
Beam energy	4 TeV	3.5 TeV
β*	0.7 m	1.0 m
Nbunches	1380	1380
Spacing	50 ns	50 ns

(25 ns tested for the future)

Target lumi: 16 fb⁻¹

Technical Stop

lon run

Ion setup

Recommissoning with beam

Machine development

Conclusions

- 2011 has been our [first] year of luminosity
 - 0.045 fb⁻¹ \rightarrow 5.2 fb⁻¹ recorded on tape
 - ... with much more to come!
- Detector performance demonstrated at high and low p_T, with W, Z and top becoming workhorse particles
 - Ultimate design precision is being approached
- ATLAS has good reach for **new physics signatures**
 - This could have been the year of SUSY, TeV-scale gravity, dijet/ dilepton resonances ... So far not, but we'll keep looking!
- There are however hints of a **Higgs-like signal**, to be confirmed/refuted in 2012
- MPP continues to play a central role in the collaboration
 - Detector operation and performance
 - Physics analysis
 - High luminosity upgrade

Thank you to everyone involved!

BACKUP

19th December 2011

General-purpose detector

Nearly 4π coverage

Excellent resolution and identification for **jets**, b-jets **electrons**, photons, **muons**, tau leptons and **missing** E_T (MET)

Inner Detector

- |η| < 2.5 - Si pixels, SCT (Si strips), TRT - σ/p_T ~ 3.8×10⁻⁴ p_T ⊕ 0.015

Electromagnetic calorimeter

- $|\eta| < 3.2$
- Pb-LAr with accordion structure
- $-\sigma/E \sim 10\%/\sqrt{E}$

19th December 2011

Hadronic calorimeter

- $|\eta| < 4.9$
- Fe+scintillator tiles: $\sigma/E = 50\%/\sqrt{E \oplus 0.03}$
- Cu/W-LAr: $\sigma/E = 90\% / \sqrt{E} \oplus 0.07$

Muon spectrometer

- |η| < 2.7
- Air-cored toroids + gas-based muon chambers

$$-\sigma/p_{\rm T} \sim 10\%$$
 for $p_{\rm T} \sim 1$ TeV

Michael Flowerdew (MPP München)

Robustness with pile-up

- In 2011 the expected number of interactions was raised significantly above 1
- Topo clusters remain stable with increasing pileup, despite substantially different cluster properties
 - Thresholds fixed for expectation of $<\mu>=8$
 - E/p shown for simulated pions, with different amounts of pile-up mixed in

Production of W bosons in association with jets

• Motivation: test of QCD and background to many physics processes

 $pp \rightarrow t\bar{t} \rightarrow (W^+b)(W^-b), \quad pp \rightarrow t \rightarrow Wb$

 $pp \rightarrow H \rightarrow W^+W^- \rightarrow 2j + lv$

- Good agreement with multiparton matrix element generators ALPGEN and SHERPA
- In preparation: measurement of W+c
 - Probes s quark parton density

Reducing the jet energy scale uncertainty

- Current top mass measurements limited by:
 - Jet energy scale (JES)
 - b-jet energy scale (bJES)
 - Initial/final state radiation (ISR/FSR) systematics
- Impact could be reduced with multi-dimensional template fits
 - In-situ determination of global scale factors for light jets (JSF) and b-jets (bJSF)
- Three-dimensional template:
 - Reconstructed top mass $(=> m_{top})$
 - Reconstructed W mass (=> JSF)

- Analysis with 5fb⁻¹ in preparation
- Also planned: simultaneous l+jets and dileptonic mass fit
 - Dileptonic mass estimators in development

SM Higgs boson: projections

Predictions made at start of data-taking have been met

Projections for ~5 **fb-1 (full 2011 data)**

- Exclusion possible in the whole mass range
- 3σ evidence possible from $m_{\rm H} \sim 130 \text{ GeV}$

Projection for ~2x5 fb-1 (ATLAS & CMS together)

- 3σ evidence possible for almost entire mass range
- 5 σ discovery possible from $m_{\rm H} \sim 130 \text{ GeV}$

The answer is just around the corner