New results from old data -JADE and OPAL-

- QCD
- Theory: observables and calculations
- Experiments
- Analyses
 - OPAL: Event shapes NNLO+NLLA
 - JADE: Durham three-jet rate NNLO+NLLA
 - OPAL: LHC inspired jet rates

S. Bethke, S. Kluth, C. Pahl^{*}, J. Schieck

QCD

Running strong coupling (Eur. Phys. J. C 64:689)

e⁺e⁻ collider

pp collider

Electro-weak Production Parton Shower

Hadronisation

Hadronic event in e⁺e⁻ annihilation

Drell-Yan production

December 20, 2011

Project Review MPI für Physik - Results from JADE and OPAL - C. Pahl

Experiments: JADE, OPAL

JADE: 1978-1986 at PETRA Q=14-44 GeV running of α_S

OPAL: 1989-2000 at LEP Q=91-209 GeV α_S precision measurement

Experiments: SiD, ATLAS

SiD: proposed at ILC Q=500 , 1000 GeV higher precision

ATLAS: 2009... at LHC Q=7...14... TeV complex QCD

December 20, 2011

Observables: event shape variables

<u>Two-hemisphere variables:</u>

- Thrust 1-T
- C parameter
- Total Jet Broadening B_T

<u>One-hemisphere variables:</u>

- Wide Jet Broadening B_w
- Durham twojet flip parameter y^D₂₃
- Heavy Jet Mass M_H

Event shape distributions

Project Review MPI für Physik - Results from JADE and OPAL - C. Pahl

Observables: jet rates

Cone type algorithms

- Preferred in hadron collisions
- Suggested in e⁺e⁻ context 1977
- Often IR unsafe

Durham (k_t-) algorithm (1992)

- y_{ij}=scaled relative transverse momentum between particles or jets
- combine pairs, starting from smallest y_{ij} up to some cutoff

- Preferred in e⁺e⁻ collisions
- Theoretically well behaved

December 20, 2011

Observables: jet rates

SISCone algorithm (2007)

- Three parameters
- Split-merge procedure

IR safe

Anti-k_t algorithm (2007)

- Use 1/y_{ij}
- Alternatively: start from highest y_{ij}
- Additionally: Radius parameter

Perfect cones

Calculations

Distributions of event shape variable y or jet rate wrt. cutoff y:

• NLO:
$$\frac{dR}{dy} = \frac{dA}{dy} \alpha_s + \frac{dB}{dy} \alpha_s^2$$
 1981

• NLO+NLLA: ...+
$$\sum_{n} D_{n} \alpha_{s}^{n} \ln(\frac{1}{y})^{n+1} + \sum_{n} E_{n} \alpha_{s}^{n} \ln(\frac{1}{y})^{n}$$
 1991

• NNLO:
$$\frac{dR}{dy} = \frac{dA}{dy}\alpha_s + \frac{dB}{dy}\alpha_s^2 + \frac{dC}{dy}\alpha_s^3$$
 2007

NNLO+NLLA:

2008

Most important error contribution results from missing higher orders.

December 20, 2011

Project Review MPI für Physik - Results from JADE and OPAL - C. Pahl

OPAL: Fits of event shape distributions

December 20, 2011

11

Measuring α_s

- More complete than NLO+NLLA analyses:
 - renormalisation scale uncertainty reduced
 - scatter from different variables reduced

$\alpha_s(m_z \circ)$ results:

NNLO	0.1201 ± 0.0030
NNLO+NLLA	0.1189 ± 0.0041

 2.5-5.0% precision, among the best measurements

SiD: Thrust Reconstruction *arXiv:1110.0016*

500 GeV 1-T hadron

Comparison: 1-T by OPAL at 189 GeV (M.T.Ford)

JADE: Durham 3-JETRATE J. Schieck

Detector- and hadronisation correction factors from MC models

Prediction: NNLO, optionally + NLLA

 $\alpha_{s}(m_{7}\circ) = 0.1199 \pm 0.0010(\text{stat.}) \pm 0.0021(\text{exp.}) \pm 0.0054(\text{had.}) \pm 0.0007(\text{theo.})$

Much smaller x^2/dof values NNLA improves fits significantly:

More stable wrt. fit range variations

Running coupling

<u>Running $\alpha_{S}(Q)$ result</u>

from event shape combination, OPAL

- JADE energy range 14-44 GeV: running confirmed strongly
- OPAL range 91-209 GeV: better precision

ATLAS: Z/γ->jets *arXiv*:1111.2690

Measured cross section σ_{Njet} for Z/ γ^* ->e⁺e⁻+jets production as a function of the inclusive jet multiplicity, for events with at least one jet with $p_T > 30 \text{ GeV}$ and |y| < 4.4 in the final state. The error bars indicate the statistical uncertainty and the dashed areas the statistical and systematic uncertainties added in quadrature.

OPAL: LHC inspired jet algorithms

New hadron collision jet rates can equally be formulated for e⁺e⁻ collisions, providing further insight

- Durham algorithm with energy cut $E_{jet} > 0.077 E_{vis}$
- Anti-k_t algorithm
- SISCone

OPAL: LHC inspired jet algorithms

SISCone algorithmus

<u>Anti-k_t algorithmus</u>

- Without Rparameter: ill behaviour
- Theory is recalculated

Conclusion

- OPAL events shapes NNLO+NLLA: precise $\alpha_s(m_Z^\circ)$ measurement, published
- Durham three-jet rate by JADE, close to publication
 - Consistent measurement
 - NLLA important
- Durham jets with energy cut, anti-k_t, SISCone by OPAL
 - Measured
 - Comparison with theory started

New models and calculations allow improved measurements of α_s with old data

