

pnCCD at FLASH

Christian Reich

Collaboration PNSensor/MPI-HLL with cluster physics group Th. Möller, TU Berlin

Christian Reich Ringberg 24.04.2007

Ringberg Meeting / April 23 – 25, 2007

VUV-Free Electron Laser at DESY: FLASH

• high intensity coherent light: 10¹² photons/pulse

- short pulses: 100 fs
- short wavelength: λ = 100nm (2002), 13 nm (now, 2006/7), 0,1 nm (future)

PNSens•r

Structure determination with a FEL

Important FEL goal: time-resolved single biomolecule imaging

- new techniques for single shot imaging
- ionisation and explosion dynamics
- \Rightarrow clusters as model systems
- easy to make from different materials
- different sizes
- high symmetry

R. Neutze, J. Haidu et al., Nature 406, 752 (2000) Radiation damage and Coulomb explosion

Christian Reich Ringberg 24.04.2007

Molecules atomic resolution

PNSens•r

Tandem setup: running two experiments at a time

FLASH: 90 eV, 13 nm, 100 fs, 5 Hz 10¹² photons/pulse

- 2 vacuum chambers with 2 noble gas cluster sources.
- FLASH beam is focused into 1. chamber (TOF).
- Refocused by multilayer mirror into 2. chamber (Scattering experiment).

PNSens•r

- Previous scattering experiment with MCP detector at FLASH
- Charged particles pose problems
- Greater dynamic range needed

PNSens•r

Setup of pnCCD at FLASH

Christian Reich Ringberg 24.04.2007 • The primary FLASH beam passes through the cluster beam and is focused back on the cluster beam by a multilayer mirror.

- Observation angle: 35° (22° 50°)
- Pixel size: 75 μm x 75 μm
- Operating temperature: -70°C

PNSens•r

Setup of pnCCD at FLASH

Christian Reich Ringberg 24.04.2007

straylight screens

PNSens•r

First pnCCD Spectrum at 90 eV

Recombined spectrum from 4000 frames with 0.005 photons/pixel/frame

T = -70° C

The signal is clearly seperated from noise and higher harmonics. FWHM: 38.9 eV

PNSens•r

Shift depends on photon density.

Correction of Common Mode I

PNSens•r

Correction of Common Mode II

Even at low photon densities the median correction induces an error of several eV (\approx 7 %).

When subtracting the mean of the 10 lowest values in each row, the signal peak position is independent of photon density up to 0.2 photons/pixel (constant offset of 16 eV).

PNSens•r

Scatter Images

PNSens•r

Scattering Profiles

PNSens•r

Summary And Outlook

- Signal from 90 eV photons is clearly seperable from noise and higher harmonics. FWHM = 38.9 eV.
- Different types of common mode correction were tested.
- Scattering images from Xe clusters agree with previous measurements.
- Single shot imaging successful?
- Common mode detection on hardware