# SIMBOL-X

# **Peter Lechner** MPI-HLL Project Review Schloss Ringberg, 24.04.07

- science background
- mission
- telescope
- detector payload
- low energy detector

# C CS REP

# science background

#### science targets

- $\triangleright$  black holes astrophysics
  - matter in the vicinity of a BH
  - history of supermassive BH formation
- $\triangleright$  particle acceleration in the universe
  - mechanism, efficiency, maximum energy

#### requirements

| $\triangleright$ | energy range        | 0.5 80 keV          |  |
|------------------|---------------------|---------------------|--|
|                  |                     | ( 100 keV)          |  |
| $\triangleright$ | sensitivity         | 0.1 10 µCrab        |  |
| $\triangleright$ | focal length        | 18 20 m             |  |
| $\triangleright$ | field of view       | 12 arcmin @ 30 keV  |  |
| $\triangleright$ | angular resolution  | 20 arcsec HEW @ 30  |  |
| $\triangleright$ | spectral resolution | 150 eV @ 6 keV (Fe  |  |
|                  |                     | 1.3 keV @ 68 keV (1 |  |
| $\triangleright$ | timing accuracy     | ~ 100 µsec          |  |

## cover the sensitivity gap

▷ SIMBOL-X =





# mission

#### mission scenario

- $\triangleright$  detector and mirror spacecraft
- ▷ 4 days orbit (20.000 / 180.000 km)
- $\triangleright$  > 70 % observation time
- $\triangleright$  time budget
  - 0.5 y commissioning
  - 2.5 y nominal operational phase
  - 2 y extension provision
- $\triangleright$  net science time: > 100 Msec
- $\triangleright$  no. of pointings: ~ 1000 (+ 500)
- $\triangleright$  on-board data storage
- $\triangleright$  telemetry 1x / orbit

#### status

- French-Italian-German consortium
- ▷ phase A (F, D → Jun07, I → Nov07)
- $\triangleright$  phase B likely to come in 2008
- ▷ launch end 2013 (Soyuz/Kourou)



## formation flight

- $\triangleright$  probably 1st science mission
- $\triangleright$  autonomous operation
- alignment by radio antennas and laser system
- $\triangleright$  positioning accuracy: 1 x 1 x 3 cm<sup>3</sup>
- ▷ positioning knowledge: 0.5 x 0.5 cm<sup>2</sup>



# telescope

#### leadership

- ▷ Osservatorio Astronomico di Brera, Italy
- ▷ industry contract: Alenia

### principle

 $\triangleright$  nested mirrors, Wolter-I geometry

## technique

- ▷ Ni electroforming replication
- ▷ Pt/C multi-layer coating by sputtering
- $\triangleright$  2 spider support structures

#### parameters

| $\triangleright$ | no. | of she | lls | ~ 100 |
|------------------|-----|--------|-----|-------|
|                  | _   |        |     |       |

- $\triangleright$  focal length 20 m
- $\triangleright$  diameter ~ 70 cm
- $\triangleright$  shell tickness 1/3 of XMM



- effective area (on axis)
  - ▷ > 1000 cm2 @ 2 keV
  - ▷ > 600 cm2 @ 8 keV
  - ▷ > 100 cm2 @ 70 keV



# detector payload



# CONCEPTION OF

# detector payload

- Iow energy detector (LED)
  - $\triangleright$  energy range 0.5 ... 20 keV
- high energy detector (HED)
  - $\triangleright$  energy range 5 keV ...
  - CdTe / CdZnTe (both under test)
  - Derta pixel size 625 x 625  $\mu m$
  - $\triangleright$  focal plane format 128 x 128
  - $\triangleright$  sub-units of 16 x 16
  - $\triangleright$  3D integration of fe-electronics
  - $\triangleright$  status: working 8 x 8 module
- active anti-coincidence shield
  - $\triangleright$  plastic scintillator
  - $\triangleright$  PMT readout
  - $\triangleright$  fibre coupling
  - ▷ status: material selection





"Calliste64" HED subunit

- → Calliste256
- 1 cm<sup>2</sup>
- 4 side buttable
- 4 r/o ASICs
- self-triggered
- 64 x in FP

# LED requirements

- science drivers
  - cosmic X-ray
     background
     estimation
  - $\triangleright$  source confusion limit

- source identification, overlap with HED
- $\triangleright$  Fe line spectroscopy
- > anticoincidence
- $\triangleright$  pulsar timing studies
- $\triangleright$  hard X-ray mission

- specifications
  - field of view
     12 arcmin
     7 cm Ø
  - angular resolution
     **20 arcsec** point spread function
     **1.9 mm**
  - energy range
    0.5 ... 20 keV
  - energy resolution 150 keV @ 6 keV
  - $\triangleright$  min. frametime
  - time resolution 100 µsec
  - ▷ "transparent"
  - ▷ s/c constraints

#### LED parameters

- format
   8 x 8 cm<sup>2</sup>
   128 x 128 pixels
- pixel size
   625 μm □
- thin entrance window thickness 450 µm
- Iow electronic noise **≤ 10 el. ENC**
- r/o time / row
  4 µsec
- window mode 32 pixels
- $\triangleright$  monolithic device
- high temperature -40 °C

# LED layout

- collaboration
  - HLL/MPE: detector, thermal and mechanical interfaces
  - $\triangleright$  IAAT: daq system
- Macro Pixel Detector
  - ▷ SDD & DEPFET
  - $\triangleright$  pixel size 625 µm  $\Box$
  - $\triangleright$  focal plane format 128 x 128
  - ▷ sensitive area 8 x 8 cm<sup>2</sup>
  - largely redundant quadrants,
     individual r/o & control
- readout modes
  - full frame
     CCD-like, bi-directional
  - $\triangleright$  window mode

selectable window size, no additional hardware



# LED dummy

## SIMBOL-X LED dummy

- design according to the current state
   of knowledge and technology
- ▷ 128 x 128 pixels (625 µm) organised in 4 independent quadrants
- $\triangleright$  processing of dummy wafers finished
- $\triangleright$  front- and backside metallisation
- $\triangleright$  for demonstration
- $\triangleright$  structural & thermal model (phase B)





# LED readout and control

Active Pixel Sensor – XEUS prototype



- CAMEX 64 readout chip (baseline)
  - ▷ 64 channel amplifier
  - ▷ source follower
  - ▷ 8-fold CDS filter
  - ▷ 64/1 analog multiplexer
  - $\,\triangleright\,$  readout time / row  $\sim$  6  $\mu sec$

- 2 x SWITCHER-II control ASIC
  - ▷ 64 channel control chip
  - ▷ 2 ports / channel
  - $\triangleright$  supply of switched voltages
  - $\,\triangleright\,$  high voltage CMOS process
    - > 20 V p-p
  - $\triangleright$  50 MHz clock
- VELA readout chip (option)
  - $\triangleright$  collaboration with PoliMi
  - $\triangleright$  4 channel prototype tested
  - $\triangleright$  64 channel version in design
  - ▷ drain current readout
  - $\triangleright$  current integration / deintegration filter
  - $\triangleright$  readout time / row < 3 µsec

# LED performance

#### experience from

- ▷ XEUS WFI 64 x 64 prototypes
  - DEPFET pixels  $75 \times 75 \ \mu m^2$
  - readout time / row  $\sim$  20 µsec
  - FWHM @ 6 keV 133 eV
- ▷ Macro Pixel Detector 4 x 4 prototype
  - pixel size 1 x 1 mm<sup>2</sup>
  - integration time 1 µsec
  - FWHM @ 6 keV 122 eV
- extrapolated SX energy resolution
  - $\triangleright$  assumptions
    - RT leakage current 0.1 ... 1 nA/cm<sup>2</sup>
    - r/o time / row 4 µsec
    - serial noise 5 el. r.m.s.
  - $Descript{S}$  radiation damage by solar protons
  - real results soon to come





# LED demonstrator

#### quadrant prototype

- science verification module
   phase B, operation with HED
- $\triangleright$  500 µm  $\square$  pixels
- $\triangleright$  format 64 x 64
- ▷ sensitive area 32 x 32 mm<sup>2</sup>

#### status

- $\triangleright$  2 chips on PXD5 production
- ▷ difference in DEPFET clear structure
- $\triangleright$  1st Al layer, to be patterned this week
- $\triangleright$  available in Jul07





# summary & outlook

# Low Energy Detector

Simbol-X representative detector in summer

Simbol-X mission

good chance to get into phase B in 2008

... if that occurs

flight hardware processing in 2008