

Sub-electron noise measurements on Ping-Pong devices

Stefan Wölfel

Ringberg Workshop

Schloss Ringberg, Tegernsee

im sonnigen April 2007

Sub-electron noise measurements on RNDR devices

Stefan Wölfel

HLL Ringbergmeeting

Schloss Ringberg, Tegernsee

im sonnigen April 2007

Outline

Halbleiterlabor der Max-Planck-Institute für Physik und extraterrestrische Physik

- **X** The basic idea of a RNDR device
- **X** The DEPFET concept
- **×** Realisation of a RNDR device
- **X** Measurements
 - **x** Charge loss in non HE devices
 - × resolution
 - × laserspectra
- **X** discussion of readout speed and optimum measurement time
- **X** New devices in production

- X In each measurement are errors, no measurement is exact!
- Measuring the number of yellow balls six times, you get six different results!

Why is it better to measure the balls multiple times ?

The scale becomes more precise (warm up effect).

Calculating the mean of all meas. results in a more precise value.

• D:

It is not better.

You can choose the value, which fits best to your theory.

X

The basic idea of a RNDR device

- **X** By measuring the charge multiple (n) times the noise (σ) can be reduced by $1/\sqrt{n}$.
- **X** Because the collected charge is stored during readout in the DEPFET-RNDR, the very same charge can be measured multiple times.

=> name: <u>repetitive non destructive readout</u> -> RNDR

Realisation of a RNDR Detector

Halbleiterlabor der Max-Planck-Institute für Physik und extraterrestrische Physik

homogenous entrance window

Realisation of a RNDR Detector

Charge measurement

The Clearcontact

Halbleiterlabor der Max-Planck-Institute für Physik und extraterrestrische Physik

Matrix operation

Halbleiterlabor der Max-Planck-Institute für Physik und extraterrestrische Physik

Circular variants

Halbleiterlabor der Max-Planck-Institute für Physik und extraterrestrische Physik

Two circular DEPFETs with <u>one</u> transfergate

Two circular DEPFETs with <u>three</u> transfergates

The RNDR principle

Halbleiterlabor der Max-Planck-Institute für Physik und extraterrestrische Physik

RNDR principle

The readout sequence

Halbleiterlabor der Max-Planck-Institute für Physik und extraterrestrische Physik

Stefan Wölfel

Ringberg Meeting, April 2007

Depfet 1

Depfet 2

measurement before transfer

measurement after transfer

First Summary

Halbleiterlabor der Max-Planck-Institute für Physik und extraterrestrische Physik

- **X** With the DEPFET detector, the collected charge can be **measured**
- X Collected charge is **stored** during readout
 - charge can be **measured arbitrarily often**

All other good detector properties remain untouched:

- high quantum efficiency
- low leakage current
- fast signal charge collection
- homogenous entrance window

The measurement setup

Charge loss with non-HE devices

Halbleiterlabor der Max-Planck-Institute für Physik und extraterrestrische Physik

The first devices: Charge loss in non-HE Ping-Pong

Halbleiterlabor der Max-Planck-Institute für Physik und extraterrestrische Physik

 F_2

Telefone Joker: Rainer

Where does the charge loss come from?

Special decay of the electron

Interface traps under the transfergate

• D:

Electrons are repulsed into the bulk

Answer C) Charge loss due to traps

Electrons injected by laser, rel unit 1e-

No charge loss with HE-RNDRs

weak charge injection by laser -> no visible chargeloss

Noise measurements with HE-devices

Halbleiterlabor der Max-Planck-Institute für Physik und extraterrestrische Physik

Answer D) Noise peak of a RNDR-Device

Halbleiterlabor der Max-Planck-Institute für Physik und extraterrestrische Physik

- For higher loop numbers the noise peak becomes more and more asymmetric.
- Asymmetry to higher energies (electrons) due to arriving electrons during readouts.

What is the achievable resolution?

Halbleiterlabor der Max-Planck-Institute für Physik und extraterrestrische Physik

- X Photon injection by laser during integration time
- X 360 measurements (9,18 ms)
- **X** Temperature: -45 degree

Single optical photon counting,

in terms of a <u>real linear amplifier</u>, e.g. it is possible to separate

100 photoelectrons from 101!

A readout noise of **0.18** e⁻ was measured. This is a new world record !

How to distinguish 100 electrons from 101?

10.10

What does a certain resolution mean in terms of contrast?

Halbleiterlabor der Max-Planck-Institute für Physik und extraterrestrische Physik

April 2007

The shortest time to achieve a certain noise

Continuous running readout

Halbleiterlabor der Max-Planck-Institute für Physik und extraterrestrische Physik

Continuous running readout

Timing resolution of a RNDR device

Halbleiterlabor der Max-Planck-Institute für Physik und extraterrestrische Physik

maximale Abweichung von wahrem Eintreffzeitpunkt [in Auslesen]

Next devices under production

- **X** RNDR-Matrizes
- **K** CCDs with DEPFET-RNDRs as readout nodes

Halbleiterlabor der Max-Planck-Institute für Physik und extraterrestrische Physik

Summary and Conclusion

RNDR devices where fabricated by connecting the internal gate of two DEPFETs via an additional transfergate The number of collected electrons could be measured with resolution of only **0,18 electrons** Single optical photon detection was achieved Matrix operation is possible Readout anode for CCDs Only moderate cooling (-50 °C) needed Possible applications: > Ultra low noise x-ray detector Single optical photon detector **x** New detector concept: timing measurement with continuous readout

Stefan Wölfel Ringberg Meeting, April 2007

MP Halbleiterlabor, Munich, germany