

DEPFET Active Pixel Sensors for the ILC

Laci Andricek

for the DEPFET Collaboration (<u>www.depfet.org</u>)

The DEPFET ILC VTX Project

+ + + + mpi + halbleiterlabor

HLL Project Review, April 2007

5 test beam periods have been done in the past
3 x @ DESY (1-6 GeV e⁻) – spatial resolution limited by multiple scattering to ~6μm for us.
2 x @ CERN (120 GeV π) – August and October 2006. Analysis still not finished...

:- Reference system

a. the 4 layer Silicon strip telescope (Bonn), double sided strip detectors, 50 μ m pitch b. high precision telescope, 4 reference planes of DEPFETs at CERN test beam

:- Sensors are

450µm thick (mip = 36ke)

min. pixel size = **33x23.75µm**²

various DEPFET variations have been studied

:- Speed:

Clearing in 20ns

Sample-clear-sample in CURO: ~ 240 ns (This would give a 4 MHz row rate) Non-zero suppressed readout (mostly)~ 800 μ s/frame (128 rows) \rightarrow ~ 6 μ s/row

Noise is determined from pedestal variations

(Jaap Velthuis)

halbleiterlabor

- Seed pixel has signal >5 σ in central area
- Add neighbors if signal $\geq 2\sigma$
- charge mostly confined in 3x3 cluster

- S/N ≈ 110..120 (for 450 µm sensor!)
- Noise about 300 e- ENC

most of the noise is attributed to the CURO II chip (internal cross talk, noisy f/e, noisy current storage cells..)

The high precision DEPFET telescope \rightarrow <1 µm track resolution in the DUT plane

5 (!) DEPFET planes, $\Delta x=25mm$

DEPFET noise at high BW

HLL Project Review, April 2007

mpi

As long as noise is dominated by r/o chip \rightarrow S/N linear with g_a

PXD4 has L=6µm, some matrices in PXD5 have now L=4µm \rightarrow expect factor 2 better S/N

halbleiterlabor

DCD: Drain Current Digitizer

Test chip: 6X12 channels (pixels)

submitted (UMC 0.18), April 2007

what is new?

- -: improved input cascode (regulated) and current memory cells
- -: designed for 40 pF load at the input (1^{st} layer ILC VTX)
- -: f/e noise: 34nA@40pF, 17nA@10pF, add 37nA for memory cells \rightarrow **50nA@40pF** \rightarrow at 40pF with g_q=500pA/e \rightarrow **100 e- ENC in total**
- -: 2 current based ADCs per pixel, 6 bit
- -: layout for bump bonding

(Ivan Peric/Peter Fischer)

halbleiterlabor

Mostly use 'baseline' linear DEPFET geometry

New DEPFET Generation 'PXD5'

Build larger matrices

Long matrices (full ILC drain length) Wide matrices (full Load for Switcher Gate / Clear chips)

Try new DEPFET variants:

reduce **clear voltages** (modified implantations, modified geometry) Very **small** pixels (20µm x 20µm)

- Increase internal amplification (g_q)
- Add some bump bonding test structures

PiN Diodes on thin Silicon

Thin diodes have excellent leakage currents.

Processing of the SOI wafers and removal of handle wafer **does not degrade devices**!

mpi

	2006	2007	2008	2009	2010
DEPFET incl. rad. tolerance	PXD5		PXD6		
Thinning					
chips/system development	CURO3	DCD1			full size
	SWITCHER3				demonstrator
thin					÷
Me./El. Samples					•
interconnections on & off module					•
Engineering module/barrels/ discs					•

Ladislav Andricek, MPI für Physik, HLL

- Matrices operated 'routinely' in test beams at DESY and CERN including a 5 layer **DEPFET** telescope with sub-micron precision.
- New sensor production with larger devices and improved DEPFET pixel cells almost finished.
- Reducing the channel length of the DEPFET translates directly into a higher S/N in the experiment! Dry etching would make it possible to exploit the potential of the DEPFET and is therefore highly desirable!
- ✓ Thinning technology at the door step to migrate to the production line. Excellent results using a commercial supplier for the engineered SOI wafers.

We are on schedule for the construction of a full size thin demonstrator by 2010!