

SDDs for Science Applications

Peter Lechner

MPI-HLL Project Review 2007

Schloss Ringberg, 23.04.07

- SDD Introduction
- History of Science Applications
- **HiCam** Medical Imaging
- **ExoMars** Planetary Research

SDD introduction (1 - principle)

- original concept
 by Gatti & Rehak, 1983
 - ▷ depleted volume
 - \triangleright transverse electric field
 - ▷ particle tracking
- spectroscopy adaptation by Kemmer & Lutz, 1984
 - \triangleright uniform back contact
 - = entrance window
- on-chip transistorHLL, 1993
 - integration of firstamplification stage

SDD introduction (2 – device properties)

- large area
 - ▷ 5 mm² ... 1 cm² (... wafer scale)
- small capacitance
 - ▷ low noise
 - \triangleright high count rates

integration of 1st FET

- \triangleright further capacitance reduction
- \triangleright no pickup, np microphony
- fully depleted and sensitive
 - \triangleright efficiency @ high energies
- backside illuminated, thin window
 - \triangleright efficiency @ low energies
 - peak/background ratio

- Iow leakage current
 - \triangleright rt operation / moderate cooling
 - $\,\triangleright\,$ thanks to clean room team
- radiation tolerant
- scalable in size, flexible in shape
- multi-channel option
 - \triangleright monolithic arrays

SDD introduction (3 – application setup)

- X-ray spectroscopy
 - sample irradiation by X-rays(XRF) or by particles (PIXE)
 - energy and intensity of emitted characteristic X-rays
 - \triangleright chemical composition of sample
- fast photon counting
 - ▷ energy discrimination
- γ-ray spectroscopy and imaging
 - > multi-channel SDD & scintillator
 - \triangleright optical light intensity
- particle detection

\bigcirc

applications – synchrotron experiments

- multi-channel SDDs
 - \triangleright large area
 - \triangleright high count rates
- **EXAFS** (Extended X-ray Absorption Fine Structure)
 - determiation of the bonding in solids by analyzing oscillations in X-ray absorption vs. photon energy caused by interference
 - ▷ ESRF/Grenoble, HASYLAB/Hamburg

X-ray holography

- > 3D holographic imaging of core electron density by referencing scattered to non-scattered X-rays
- ▷ HASYLAB/Hamburg

holographic image of Fe crystal SDD 7 x 5 mm² D. Novikov, HASYLAB

applications – analysis of works of art (1)

material analysis

- paintings, frescos, monuments, manuscripts, inlays, ...
- \triangleright non-destructive method
- \triangleright no sample preparation
- \triangleright portable instrumentation
- \triangleright on-site analysis
- compact XRF spectrometer
 - Dert 10 mm² SDD & μ -focus tube
 - \triangleright e.g. ArtTAX by RÖNTEC

"ArtTAX" analysing the ink of Goethe's Faust-I manuscript

O. Hahn, BAM RÖNTEC

"fingerprint" of ink » Faust-I re-edited while writing Faust-II

applications – analysis of works of art (2)

- optimised geometry: SDD ring
 - 1. SDD 12 x 5 mm²
 - 2. "FELIX": SD³ 4 x 15 mm²
 - \triangleright large area
 - \triangleright solid angle coverage
 - \triangleright laser cut center hole
 - ▷ polycapillary fibre

FELIX layout

Lombard buckle inlaid work VII century a.c. Trezzo sul` Adda, Italy

SDD 12 x 5 mm² module

Fe (matrix)

Au

Ag

applications – SDDs in space

- APXS (Alpha-Particle X-ray Spectrometer) on NASA's Mars Exploration Rovers Spirit and Opportunity
 - \triangleright landed Jan04, still active
 - \triangleright APXS "sniffer" by MPCh, Mainz
 - SDD 10 mm² & Cu244 a-sources

APXS system (MPCh)

APXS on ROSETTA Lander

- ▷ rendezvous with comet 67P/C-G
- ▷ Mar04, orbit May14, lander Nov14

- XTRA (X-ray Timing for Relativistic Astronomy)
 ON XEUS (X-ray Evolving Universe Spectroscopy)
 - observation of X-ray light curves of black holes and neutron stars
 - \triangleright photon rate up to 1 Mcps
 - $\,\triangleright\,$ time resolution 10 μsec
 - ▷ multi-cell SDD 19 x 5 mm²
 - uniform distribution of photon intensity by out-of-focus operation

SDD 19 x 5 mm² for XTRA on XEUS

applications – particle physics

SIDDHARTA

(Silicon Drift Detectors for Hadronic Atom Research with Timing Application)

- \triangleright DA Φ NE sychrotron, Frascati/Italy
- b "hadronic" atoms (H, D, He, N), i.e. an electron is replaced by a Kaon
- X-ray transitions are a probe to yet unknown terms of QCD
- \triangleright 234 SDDs 1cm² on 78 chips
- \triangleright mounting in progress, data end 2007

2 chips

SIDDHARTA SDD chip, 3 x 1 cm²

- aSPECT neutron decay experiment
 - \triangleright TUM E18, FRM-II
 - \triangleright study of neutron decay parameters
 - spectroscopy of recoil protons by electric field analyser
 - ▷ SDD as proton counter
 - ▷ 1st test with SDD 30 mm² successful
 - \triangleright use of SIDDHARTA SDD in preparation

applications – scintillator readout

radiation monitor

- ▷ ESTEC, Politecnico di Milano
- γ-ray spectroscopy (& imaging)
 system, e.g. for Solar Orbiter
- \triangleright SDD & scintillator (CsI / LaBr₃)

SDD 30 mm² & LaBr₃ scintillator

- dual X- and γ-ray spectroscopy
 - CNR-IASF, Bologna
 - b distinction of X- and γ-events by rise time discrimination

- DRAGO (DRift detector Array Gamma camera for Oncology)
 - ▷ Politecnico di Milano
 - SDD array 77 x 8 mm²
 & monolithic CsI scintillator
 - $\triangleright \gamma$ -ray imaging by centroid method
 - \triangleright position resolution < 1 mm
 - demonstrator for medical applications: nuclear surgery, small animal imaging, ...

HICAM – detector

HICAM project

- ▷ European 6th Framework Programme
- ▷ lead by C. Fiorini, Politecnico di Milano
- ▷ 2 institutes, 3 companies, 4 hospitals
- \triangleright start in Mar07, 3 years

objectives

- > γ-ray camera (Anger type)
- ▷ spatial resolution ~ 2.5 mm
- \triangleright compact detector head
- ▷ magnetic field (NMR) compatible
- \triangleright 2 prototypes 5 x 5 cm²
- ightarrow 1 application module 10 x 10 cm²

approach

- ▷ SDD array, cell size 1 cm²
- ▷ CsI scintillator (LaBr₃ optional)
- ▷ parallel hole or pinhole collimator

SDD

- ▷ monolithic subunits 5 x 1 cm²
- \triangleright square shaped cells
- ▷ connection pads on narrow edge

readout electronics side

entrance window side

HICAM – system & applications

HICAM system

challenges

- \triangleright cooling to -20 °C is mandatory
- \triangleright dissipation of 300 W (!)
- \triangleright compact housing

SPECT (Single Photon Emission Computed Tomography)

 \triangleright multiple angles, tomographic 3D reconstruction

- pinhole SPECT
 - ▷ (de-)magnification by geometry
 - $\,\triangleright\,$ sensitivity ~ 1 % of planar SPECT

ExoMars – background

ESA's Aurora programme

- \triangleright explore the solar system
- \triangleright search for life beyond Earth
- b human Mars mission ~2030

ExoMars mission

- \triangleright phase B, launch 2013, arrival 2015
- orbiter / descent module / rover
- \triangleright rover in autonomous operation

scientific tasks

- b geophysics, environment parameters
- ▷ search for past/present life signatures
- $Descript{identify}$ hazards to humans

Pasteur" payload

- panoramic instruments
 - optical stereo camera
 - IR spectrometer
 - ground penetration radar
- contact instruments
 - microscope camera
 - Mößbauer spectrometer
 - Raman spectrometer

\triangleright support instruments

- subsurface drill (2m depth)
- sample preparation and distribution system
- ▷ analytical laboratory
 - Raman spectrometer
 - IR microscope
 - gas chromatograph
 - X-ray diffractometer
 - organics and oxidants detector
 - life marker chip

ExoMars – MIMOS2A system

- Mößbauer spectroscopy
 - resonant recoil-free emission/absorption
 of γ-rays by nuclei of solid-bound atoms
 - > nuclear levels of emitter/sample shifted and split by chemical environment
 - \triangleright probing of levels by red/blue-shift
 - $\,\triangleright\,$ resolution $\Delta E/E$ ~ 10^{12}

- MIMOS (MIniature MOeßbauer Spectrometer)
 - ▷ G. Klingelhöfer, Gutenberg-Uni Mainz

MIMOS on board of MER PIN diodes Co57/Fe57 source (14.41 keV)

- SDD for MIMOS2A
 - ▷ 2 x 45 mm², 4 chips around collimator

SDDs are present in many different science disciplines, many more to come, no end in sight.

- In addition there is a variety of commercial applications.
 - \rightarrow next talk by Adrian

- Multilinear SDD for ultrafast X-ray imaging @ XFEL.
 - → talk by Matteo