

Radiation Damage on MOS-Structure

Q. Wei, L. Andricek, H-G. Moser, R. H. Richter Max-Planck-Institute for Physics Semiconductor Laboratory HLL Project Review, Ringberg, 2007

Qingyu Wei, MPI für Physik, HLL

Radiation Damage I MP laibleiterlabor **MOS-Structure** Energy deposited in material Measurement of its effects on devices TID (dose) \leftarrow Ionization in SiO₂ Non-ionization in Si ---- Displacement (fluence) Interaction with electronic structure of atoms by photoelectric, Compton & pair-production Carrier injection e-h pair creation Bond breaking coulomb scattering collision Elastic scattering in SiO_2 from contacts of heavy particles of neutrons and semiconductor atoms from semiconductor atoms e-h transport in SiO₂ Release of mobile Defect generation Impurities Energetic recoil atom (H, OH, Na, etc.) (energy loss by ionization Hole trapping **Defect** migration excitation & displacement) in strained region Electron capture Migration of impurities

Buildup of

Charge/defects

Accumulated TID or displacement reach its tolerance limits

Interface trap

Oxide charge

Device degradation or failure

Radiation Damage II

Radiation damage in MOS-Structure:

- Surface damage due to Ionizing Energy Loss (IEL)
 - \land accumulation of charge in the oxide (SiO₂) and Si/SiO₂ interface
 - A Oxide charge → shifts of flat band voltage, (depleted → enhancement)
 A annealing at RT
 - ▲ Interface traps → leakage current, degradation of transconduction,... no annealing below 400 °C

S/N Ratio deteriorated!

Discontinuity of current density J_n - J_0 in short time lead to charge carriers accumulation & trapping in N/O strained interface field dependence of current density & thickness of the dielectrics plays an important role! charge in Si/SiO interface donot affect the field distribution in dielectrics!

- Reservoir: hole traps are not exhausted, unless a larger bias voltage is applied on the gate!
- Saturation: equilibrium between trapped filling and recombination
 - -Generated holes are pushed away!
 - -Recombination of trapped holes with electrons
 - Recombination of tunneled electrons from silicon into interface with trapped holes!

Experiment Conditions and Methods

Irradiation (X-Ray):

•Co⁶⁰ (1.17 MeV and 1.33 MeV)

•GSF – National Research Center for Environment and Health, Munich

•CaliFa (17.44 KeV)

•Max-Planck-Institute Semiconductor Labor, Munich

•Roentgen facility (20 KeV)

•Research center, Karlsruhe

•Dose: irradiation up to 1 Mrad with different dose rate (1rad=0.01J/kg)

• Process: No annealing during irradiation ~ irradiation duration from 1 day to 1 week

•*Radiation levels at the ILC VTX*: D_{ionization}≈ 100 .. 200 Krad

Φ ≈ 10¹⁰ .. 10¹¹ neq(1MeV)/cm²

•Comparison of different semiconductor devices

	DEPFET	MOS-C	Gated diode
N _{ox} (method)	Δ V _t (IV-Measurement)	ΔV _{FB} (CV-Measurement)	∆V _{FB} & ∆V _g (CV-Measurement & gated diode technique)
N _{it} (method)	Subthreshold slope (Subthreshold technique)	Stretch-out (High-low frequency based on the CV)	Full width at 2/3 maximal of current (gated diode technique)
Other parameters	g _m (IV-Measurement)		S ₀ , $ au$ (gated diode technique)

Results for MOSDEPFET

1: 2:

Gate Bias conditions: 0V

Results for MOS-C

For MOS-C

Radiation hardness by Nitride-layer

MPI Halbleiterlabor

Annealing for surface damage

Oxide charge decrease with time:

(Tunnel annealing @ RT)

