
Why Monte Carlo Methods 
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First off - by a Monte Carlo method we mean computation with the
 use of numbers which follow a ‘random’ sequence according to a
 probability distribution. 

This is necessary for the simulation of processes which are truly
 random (quantum mechanics).  Other processes are so
 complicated they appear random (e.g., diffusion, coin flipping,
 …).  Some of the first uses of computers were the simulation of
 neutron diffusion in WWII, and a lot of the theory was developed
 at that time (Ulam, von Neumann, Metropolis, Fermi, …).  Today,
 Monte Carlo simulations are used in all branches of science. 

Monte Carlo methods are also the best known technique for
 estimating higher dimensional integrals. 
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Some Examples 

Diffusion - example of a stochastic system.  Very large number of
 ‘’degrees of freedom’’ - cannot know the position and velocities of
 all particles at one time, so work with probability distributions
 (statistical mechanics). 

Ising model - spin correlations, mean field theory.  Monte Carlo
 method uses a stochastic approach to simulate the exchange of
 energy between spin system and heat bath (external magnetic
 field). 

Monte Carlo event generators in particle physics – basic physics
 is quantum in nature, so events populate phase space in a
 random way.  The generator produces data sets according to a
 quantum mechanical model which provides cross sections
 (probability density functions in phase space). 

2 
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Some Examples 

Simulation of experiments – particle decays follow a probability
 density law, interactions of particles in detectors probabilistic,
 number of electrons produced at the photocathode of your PMT
 probabilistic, …  Chain of probabilistic steps for which a
 simulation is needed to generate expected distributions. 

Integration in higher dimensions or in complicated volumes – in
 ‘real life’, often faced with integration problems which cannot be
 solved analytically (e.g., acceptance of a part of your detector in
 a complicated geometry, high dimensional integrals) and
 standard numerical approaches are not applicable (too slow),
 loop integral calculations, … 

Optimization problems – trying to find local and/or global maxima
 and minima in a complicated, possibly higher dimensional space
 (e.g., extraction of parameters in fitting of data)  
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Brownian Motion 

Discovered in 1827 by the English botanist Brown, who observed 
that small particles immersed in a liquid exhibit irregular motion.  
Mathematical description from the laws of physics by Einstein in 
1905, who started with the assumption that the motion was 
caused by repeated collisions of the molecules with the medium.  
Subject of intense interest since. 
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Brownian Motion–cont. 

Heuristic derivation – start from symmetric random walk: 

€ 

P(x,n +1) =
1
2
P(x −1,n) +

1
2
P(x +1,n)

€ 

P(x,n +1) − P(x,n) =
1
2
P(x +1,n) − 2P(x,n) + P(x −1,n)[ ]

To get to position x at step n+1, we have to be at either x-1 or x+1 
at step n: 

Now rewrite by subtracting P(x,n) from each side 

Notice that this looks like a first derivative in time on the LHS of 
the equation - remember that n is a time variable - and a 2nd 
derivative of space of the RHS (n fixed).  So, we recover the 
diffusion equation from the random walk.  Need physics input to 
get the units. 



Diffusion Example 
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Ising Spin System 

Start with some initial arrangements of spins on a lattice: 

Pick one of the spins, and calculate
 the energy needed to make it flip,
 Eflip.  Assuming only nearest
 neighbor interactions, this would be: 

€ 

E flip = −J( sis j −
i, j
∑ si 's j ')

i, j
∑

If Eflip is negative, accept the spin flip.  If it is positive, generate a
 random number distributed flat between [0,1], and compare the
 the Boltzmann factor. If 

€ 

r < e−Eflip / kBT      accept the spin flip

r ≥ e−Eflip / kBT      reject the spin flip
Metropolis
 Algorithm 
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Ising Spin System 

The equilibrium state is reached when the rates for changing from
 one spin configuration to another balance.  The rate depends on
 the number of particles in a particular spin state and the
 probability for a spin flip.  The algorithm we have just described
 yields the correct probabilities to find the system in different
 energy states. 
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Monte Carlo Integration 

Many numerical techniques for solving integrals: 

€ 

f (x) dx
a

b
∫ = h f (xi)

i=1

N−1

∑ +
h
2

f (a) + f (b)[ ] − h2

12
′ f (b) − ′ f (a)[ ] + O(h4 )

Trapezoidal Rule 

Precision proportional to spacing, or 1/N where N+1 is number of 
 grid points.  Can do better, e.g., using Simpson’s rule,
 extrapolation method, Gaussian quadrature, …, where the error
 term is h4 or higher.  However, for a fixed precision, the number
 of calculations scales as ND where D is the dimension of the
 integral we are estimating.   
Look at scaling of MC integration. 
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Monte Carlo Integration 

We want to estimate the following integral: 

  

€ 

I = g( x ) d x 
D
∫

where D is a multidimensional volume.  Suppose we draw m
 points in D with an iid (independent, identically distributed)
 sampling.  Then we estimate I as 

  

€ 

ˆ I m =
VD

m
g(  x (1)) + g( x (2)) + + g(  x (m ))[ ]

Law of Large Numbers: 

€ 

m→∞
lim ˆ I m = I   with probability 1

Central Limit Theorem: 
  

€ 

m ˆ I m − I( )→ N(0,σ 2)     σ 2 = var g( x ){ }

The MC method converges as √m independent of the
 dimensionality.  Note that variance could however be large. 
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Random Numbers 

We now consider how random numbers are generated on the
 computer.  Since these are generated with an algorithm, they are
 not random, but pseudo-random.  This means the distributions of
 numbers produced by the algorithm should have the properties
 we expect for uncorrelated random numbers.  

Note that having a prescription for generating the random
 numbers is useful, since we often need reproducible sequences
 for debugging and reproducibility of programs. 

Examples:  
•  linear congruential generators 
•  Lagged Fibonacci generator 
•  … 
Follow Simulation and the Monte Carlo Method, R. Rubenstein 
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Linear Congruential Generator 

Calculate the residues, modulo an integer, of a linear
 transformation: 

€ 

Xi+1 = (aXi + c)(modm),         i = 0,...,n
a is the multiplier
c is the increment
m is the modulus

X0 is the seed, remaining values completely fixed

} non-negative integers 

Random numbers between (0,1) are obtained via: 

€ 

Ui =
Xi

m
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Linear Congruential Generator 

Once a previous number is reached, then the sequence will repeat
 itself.  The maximum number of distinct numbers is therefore m. 
 The sequence is periodic, and the period is therefore a key value
 to be determined. 

Example: 

€ 

a = c = X0 = 3 m = 5
Xi+1 = 3Xi + 3( ) mod(5)

X0 = 3,X1 = 2,X2 = 4,X3 = 0,X4 = 3
Period p = 4 (Repeats after 4 steps)

The best we can do is p=m.  A full period is achieved if 
1.  c is relative prime to m (c and m have no common divisors) 
2.  a≡1(mod g) for every prime factor g of m 
3.  a≡1(mod 4) if m is a multiple of 4 
The Art of Computer Programming: Seminumerical Algorithms, Vol. 2, D. E. Knuth 
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Caveats 
m=2β where β represents the word length, guarantees a full
 period, (other conditions mean c should be odd and 
a=1(mod 4) 

 but, need to be careful if need precision (large # of rns): 

For instance, if an LCG is used to choose points in an n
-dimensional space, triples of points will lie on, at most, M1/n

 hyperplanes. This is due to serial correlation between
 successive values of the sequence … 

A further problem of LCGs is that the lower-order bits of the
 generated sequence have a far shorter period than the
 sequence as a whole if m is set to a power of 2 … 

From Wikipedia 
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Tests of pseudorandom number generators 

It is important to test the random number generator which you will
 use for your calculations (simulations), or use a generator which
 has demonstrated properties.  There are many tests one can
 imagine.  The most basic is obviously to see that the values are
 uniformly distributed (you should compare to the theoretical
 values for the different moments of the distribution, e.g.).  In the
 following, we look at some distributions generated using the
 RNDM generator in the CERN Library. 

Method has: 

€ 

c = 0
X0 = 200000000110604716258
a = 200000003432772446158
m = 247

On CDC Computer 
On your computer ? 



IMPRS  16-19 Jan 2012 Monte Carlo Methods 16 

Tests of RNDM 

Expectations: 

€ 

E[x] = x f (x)
0

1
∫ dx = x

0

1
∫ dx =

1
2

m2 = x − 1
2

 
 

 
 

2

dx
0

1
∫ =

x3

3
−
x2

2
+
x
4 0

1

=
1
12

= σ 2

Let us see how our function
 performs: 
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Mean & Variance 
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Tests of RNDM 

Look at a somewhat more sophisticated quantity, the correlation
 between successive random numbers.  For the correlation
 coefficient, we expect: 

€ 

ρxy =
cov[x,y]
σ xσ y

=
E[xy]− µxµy

σ xσ y
=
E[xy]−1/4
1/12

€ 

E[xy] = E[x]E[y]
and ρxy = 0
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Exercise with Cumulative Distribution Function 

What is the probability density for xy, if they are uniformly
 distributed and independent ? 

€ 

F(a) = Pr(xy ≤ a) = f (z) dz
0

a
∫      where  z = xy

€ 

xy ≤ a     two cases :  x ≤ a 0 ≤ y ≤ 1
                                  x > a    y ≤ a / x

So, 

€ 

F(a) = dy dx
0

1
∫
0

a
∫ + dy dx

0

a / x
∫

a

1
∫ = a + a / x dx

a

1
∫ = a + aln x a

1 = a − alna

To get the pdf, we differentiate: 

€ 

f (z) =
dF(z)
dz

=1− ln z −1= −ln z
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Example 
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Kolmogorov-Smirnov test 

Define the cumulative distribution function for the sample and
 compare with the expected: 

€ 

FN (x) =
I(-∞,x )(Xi )

i=1

N
∑

N
  where I(-∞,x )(X) =

1, if − ∞ < X ≤ x
0, otherwise
 
 
 

 
 
 

Look at the max deviation of this from the expected cdf: 

€ 

DN =
−∞<x<∞
sup FN (x) − FX (x)

DN should be within a certain value if FN is really from FX. 
 Expected results are tabulated.  Note that for a flat distribution
 between (0,1), FX=x 
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Kolmogorov-Smirnov Test 

Confidence          
 DN 
20%                     1.07/√N 
10%                     1.22/√N 
5%                     1.36/√N 
2%                     1.52/√N 
1%                     1.63/√N 

In our case,  
N=5 107, 1/√N=1.4 10-4 
Max deviation is 10-4, so high
 confidence that the two
 distributions agree 

For N>35 or so 
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Exercises 

1.  Produce a linear congruential generator which generates uniform random integers
 between 0,10.  Generate a long sequence of numbers and look at mean, variance. 

2.  Find the cumulative distribution function and the pdf for the product of 3 iid real
 random numbers with a flat pdf between [0,1) and compare to a simulation. 

3.  Calculate π by simulating pairs of uniform random numbers and counting the
 fraction with r≤1 

4.  Consider the operation of a Si PM, a square array of cells.  Photons are incident on
 the detector in such a way that each cell has the same probability to get hit.  The
 cells have a 100% efficiency for registering a hit if a photon hits an empty cell, but
 cannot count more than one photon. 
a)  Find an analytic expression for the mean number of cells firing as a function of

 the number of cells in the SiPM and the number of incident photons. 
b)  Write a simulation which produces the distribution of number of cells hit, and

 compare with the analytic formula. 



IMPRS  16-19 Jan 2012 Monte Carlo Methods 24 

Generating RNs for any Distribution 

So far, we have seen how to generate (pseudo)random numbers
 in the range [0,1) with a flat probability distribution.  We will see
 how to use this to generate random numbers for any probability
 distribution.  We will consider a couple of different techniques: 
•  change of variables 
•  Inverse transform method 
•  Acceptance-Rejection method  

Many special techniques have been developed for individual
 distributions to speed up the evaluation.  We will only consider a
 couple of examples - check the references for more details. 

Also, we look only at generating continuous distributions.  Similar
 techniques apply for discrete distributions → exercises. 
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Change of variables for continuous distribution 

If we have a 1-1 mapping from variables      with pdf        , and we
 want to change to variables                , then we have the resulting
 pdf 

€ 

J
ij
=
∂x

i

∂y
j

  

€ 

g( y ) = f ( x ( y )) | J |

where 

and          is the determinant of the Jacobian Matrix.  This
 technique can be used when we have functions we can deal with
 analytically (rare in ‘real’ life). 

€ 

| J |

!x f(!x)
!y = !y(!x)
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Exponential Distribution 

As an example, we consider first generating rns according to an
 exponential distribution.  I.e., we want 

€ 

g(y)dy = e−ydy            0 ≤ y ≤ ∞

and we start with 

€ 

f (x)dx =1 dx              0 ≤ x < 1

We want to know y(x) which will yield the desired pdf g(y) 

€ 

€ 

g(y)dy = f (x)dx

e−ydy = dx    or   x(y) = e−y,    and so y(x) = − ln x

More generally,  

€ 

g(y) =
1
λ
e− y /λ         y > 0,λ > 0

y(x) = −λ ln x
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Exponential Distribution 

Some Fortran code: 
* 
      slope=2. 
* 
      Call Ranlux(RVEC,Len) 
* 
      Do I=1,Len 
         x=rvec(I) 
         y=-slope*alog(x) 
         write(10,*) x,y 
      Enddo 
* 
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Gaussian Distribution 

Box-Muller method: 

We want 

€ 

g(y)dy =
1
2π

e−y
2 / 2dy

Consider the following construction 

€ 

y1 = −2ln x1 cos2πx2 y2 = −2ln x1 sin2πx2

where f (x)dx = dx        0 < x < 1
and x1,x2  are independent

Solving for x1,x2 

€ 

x1 = exp − 1
2
y1
2 + y2

2( ) 
  

 
  

x2 =
1
2π
arctan y2

y1
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Gaussian Distribution 

The Jacobian Determinant is 

€ 

∂x1

∂y1

∂x1

∂y2
∂x2

∂y1

∂x2

∂y2

=
−y1e

−
1
2

(y1
2 + y2

2 )
−y2e

−
1
2

(y1
2 + y2

2 )

−
1

2π
y2

y1
2 + y2

2
 

 
 

 

 
 

1
2π

y1

y1
2 + y2

2
 

 
 

 

 
 

= −
1

2π
e
−

1
2

(y1
2 + y2

2 )

                = −
1
2π

e−y1
2 / 2 

  
 
  

1
2π

e−y2
2 / 2 

  
 
  

i.e., each of y1,y2 will independently be distributed according to a
 Gaussian distribution if we choose 

€ 

y1 = −2ln x1 cos2πx2 y2 = −2ln x1 sin2πx2
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Gaussian Distribution 

Some code: 
* 
      Call Ranlux(rvec,Len)  
* 
      Do I=1,Len,2 
         x1=rvec(I) 
         x2=rvec(I+1) 
         y1=sqrt(-2.*alog(x1))*cos(twopi*x2) 
         y2=sqrt(-2.*alog(x1))*sin(twopi*x2) 
         write(11,*) x1,x2,y1,y2 
      Enddo 
* 

y 
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RN using Cumulative Distribution Function 

Suppose you don’t have an analytic form for the pdf you want to
 generate (e.g., you may want to generate numbers according to
 an empirically obtained pdf).  How to proceed ?   

Using the cdf: 

Now suppose x is a rn distributed according to f(x).  F is now also
 a rn.  Its distribution is: 

€ 

F(x) = f ( ′ x ) d ′ x 
0

x
∫  

€ 

g(F) = f (x) dx
dF

= 1

F has a uniform distribution between (0,1).  So, to get x according
 to f(x), generate a rn number from the uniform distribution and set
 it equal to F, and then find the value of x such that 

€ 

F(x) = f ( ′ x ) d ′ x 
0

x
∫  
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RN with cdf 

Example: In the GERDA laboratory at the MPI, we are studying
 the properties of Ge detectors.  We put a source close to the
 detector, and look at the spectrum, which we then compare to our
 MC simulations.  In addition to the source, we also have
 background counts, which we don’t know how to simulate in
 detail.  However, we can measure it, and simulate based on the
 measured distribution. 
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Measured Background Spectrum 
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Simulation of Background 
      Nsum=0 
      Do I=1,3000                       
         Read(20,*) Energy(I),Counts(I)   The background is given in the form of a  
         Nsum=Nsum+Counts(I)              histogram with 3000 bins, from 0-3000 keV 
      Enddo 
* Get the normalized running sum 
      CDF(1)=Float(Counts(1))/Nsum 
      Do I=2,3000 
         CDF(I)=CDF(I-1)+float(Counts(I))/Nsum 
      Enddo 
* Now generate the background distribution using the cdf and interpolation 
      Call Ranlux(RVEC,1000000) 
* For each random number, search energy interval from cdf 
      Do I=1,1000000 
         Write(21,*) rvec(I),-LOCATR(CDF,3000,Rvec(I)) 
      Enddo 

} work out the cdf 

}
 

Binary search routine to find bin k (energy interval) for which  
                         cdf(k)≤rvec(I)≤cdf(k+1) 
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Background cdf 
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Simulated Background 
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Acceptance-Rejection Method 

We want to generate values of x according to p(x)dx, but cannot
 (or prefer not to) use the cumulative distribution function. 

Suppose f(x) is everywhere greater than p(x), and that we can
 sample uniformly in the two dimensional area given by (x,f(x)). 
 Then, we reject values for which f(X)>p(X), where X is the
 randomly chosen value of x.  This will give  a distribution in x
 which follows p(x). 
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Rejection Method 

€ 

rewrite p(x) = Cf (x)g(x)  where 0 < g(x) ≤ 1
generate U from a uniform distribution between 0,1 
and Y according to f (x). 

                                  g(x) =
p(x)
f (x)

Then,
1. If U ≤ g(Y ),  then accept and set X = Y
2. If U > g(Y ),  try again

Technique: 
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Rejection Method 

Note that  

€ 

p(x) dx
−∞

∞

∫ = 1

The efficiency of the method will depend on 

€ 

f (x) dx
−∞

∞

∫ = A

A fraction 1/A of trials will be accepted.  

To generate values according to f(x), if possible we pick a form
 where we can calculate the cdf analytically and take the inverse
 as discussed earlier. 

Very common technique. However, in several dimensions, the
 method can be very inefficient if a good covering function cannot
 be found. 
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Example 

€ 

p(x) = 3x2          0 ≤ x ≤ 1
f (x) = 3

Efficiency will be 1/3 
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Gamma Distribution 

Gamma Distribution: 

€ 

pa (x)dx =
xa−1e− x

Γ(a)
dx       x > 0

For a an integer, the gamma
 distribution is the waiting time
 for the ath event in a Poisson
 process of unit mean. 

For a=1, this is just the usual
 exponential distribution. 

Look at a=9. 
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Gamma Distribution 

As a covering function, try Lorentzian Distribution 

€ 

f (x)dx =
1
π

1
1+ x2
 
 

 
 
dx

The cdf is 

€ 

F(x) =
1
π

1
1+ ′ x 2
 
 

 
 

d ′ x =
arctan(x)

π0

x
∫

and we generate x from the inverse 

€ 

x = F −1(U) = tan(πU)

We can scale and shift the distribution as needed: 

€ 

x = a0 tan(πU) + x0
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Gamma Distribution 

€ 

f (x) =
0.15

(1+ 0.05(x − 8.)2)
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Gamma Distribution 

* 
      Call Ranlux(rvec,10000) 
      Call Ranlux(rvec1,10000) 
* 
      Do I=1,10000 
         x=sqrt(20.)*tan(3.1415926*rvec(I))+8. 
         If (rvec1(I).le.testfun2(x)/cover2(x).and. 
     &       x.gt.0..and.x.lt.30.) then 
            write (26,*) I,x 
         Endif 
* 
      Enddo 
* 

      Real Function testfun2(x) 
* 
      Implicit None 
      real x,gamma 
* 
      testfun2=x**8*exp(-x)/gamma(9.) 
* 
      return 
      end 
* 
      Real Function cover2(x) 
* 
      Implicit None 
      real x 
* 
      cover2=0.15/(1+0.05*(x-8.)**2) 
* 
      return 
      end 
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Gamma Distribution 
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Rejection Method in Several Dimensions 

The rejection technique can be easily extended to several
 dimensions as indicated in the figure: 

G 

Ω 

1.  Generate a random vector Y uniformly distributed in Ω where
 Ω is a nice region, e.g., multidimensional rectangle,
 hypersphere, … 

2.  If Y is in G, accept 
3.  Else, repeat  
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Example 

Suppose we want to generate a random vector uniformly
 distributed on the surface of an n-dimensional unit sphere from a
 random vector generated in an n-dimensional hypercube. 

from R. Rubenstein, Simulation and the Monte Carlo Method 

Check if point inside
 sphere.  If yes, rescale
 coordinates to surface. 
 Else, reject. 

reject 

x 
Keep, move 
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Spherical Surface 

* 
* Try now the surface of a sphere (3D) 
* 
      Do I=1,10000,3 
         x1=1-2*rvec(I) 
         x2=1-2*rvec(I+1) 
         x3=1-2*rvec(I+2) 
         xsq=x1**2+x2**2+x3**2 
         If (xsq.lt.1) then 
            z1=x1/sqrt(xsq) 
            z2=x2/sqrt(xsq) 
            z3=x3/sqrt(xsq) 
            Write(23,*) I,z1,z2,z3 
         Endif 
      Enddo 
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Simulation of Random Vectors 

Suppose we want to generate a random vector: 

  

€ 

 
X = {X1,, Xn}  with pdf  f (x1,,xn )  and cdf  F(x1,, xn )

Case 1: the variables are independent 

  

€ 

f (x1,,xn ) = f i (xi )
i=1

n
∏    where  f i (xi ) = f (x1,, xn ) d x except i∫

Can use the inverse transform method on each variable
 separately: 

  

€ 

Xi = Fi
−1(Ui )        i = 1,,n
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Simulation of Random Vectors 

Case 2: Dependent variables: 

  

€ 

F1(X1) =U1
F2(X2 | X1) =U2



Fn (Xn | X1,,Xn−1) =Un

Need to solve this system
 of equations.  Efficiency
 typically depends on the
 order in which equations
 set up.  More on this later. 



Probability Distributions for Functions of Variables 
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You have generated random numbers according to a pdf,         , 
 and want to find the probability distribution for a function of your
 variables: 

Function of your variables g(!λ) : !n → !

Integral over n-1 dimensional
 surface defined by g(!λ) = g

e.g., 1 parameter 

!λ according to pλ(!λ) n dimensional vector

pg(g) =
pλ(λg)

dg/dλ|λg

g(λg) = g

pλ(!λ)

p(g) =
∫

!n

δ
(
g − g("λ)

)
p("λ)d"λ =

∫

g−1(g)

p("λ)
|∆g|dσ("λ)
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Exercises 

1.  Use the cumulative distribution function to generate rns following a Poisson
 distribution of mean ν=0.2, ν=20. 

2.  Generate a random variable from 

using the acceptance-rejection technique. 

3.  On the web page www.mpp.mpg.de/~caldwell/ss11/spectrum.dat , you will find the
 background spectrum measured in the GERDA test lab.  Use the file to generate a
 background spectrum for 500000 events. 

4.  A radioactive source is located 1 cm above a detector surface, and the decay
 products are emitted isotropically.  The decay products which hit the detector
 penetrate a distance s before stopping, with 

with s given in meters.  Calculate & simulate the depth (normal to the surface) at which
 particles stop.  

€ 

p(x) =
2
πR2 R2 − x2         − R ≤ x ≤ R

p(s) ∝ e−s/1·10−8
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Monte Carlo Integration 

We now look at integration methods which are based on random
 numbers.  There are many techniques which work well for low
 dimensional integrals with well-defined integration regions (e.g.,
 Gaussian quadrature).  In higher dimensions or complicated
 domains, these techniques do not work (well or at all).  In these
 cases, Monte Carlo integration is the technique of choice. 

As usual, there are several techniques available.  We will start
 with the simplest, and then see how to improve the convergence
 properties (variance reduction techniques).  Code words: 
•  Hit or Miss 
•  Sample mean 
•  Importance sampling, correlated sampling, stratified sampling 
•  Metropolis, Metropolis-Hastings, Markov Chain Monte Carlo 
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Hit or Miss Integration 

This method is very closely related to our Acceptance-Rejection
 technique for generating random numbers 

Suppose we want the area under p(x).  Then we can calculate the
 area under f(x) and multiply by the fraction of random numbers
 (generated uniformly under f(x)) which are under p(x).  If this
 fraction is r, then 

€ 

I = p(x) dx
a

b
∫ = r f (x) dx

a

b
∫
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Hit or Miss Integration 

Note that each point in the plane has probability r to be under the
 curve p(x).  We therefore have a Bernoulli process, and we can
 use the Binomial distribution to see how quickly the integration
 will converge.  The steps are: 

1.  Pick a covering function f(x) which you can integrate.  

2.  Generate N points in the plane uniformly under f(x).  Bayes’
 Theorem: 

where N is the number of trials, H is the number of successes.  

€ 

Ω = f (x) dx
a

b
∫

€ 

P(r |N,H) =
P(H |N,r)P(r)

P(H |N,r)P(r) dr
0

1
∫
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Hit or Miss Integration 

P(r) is our prior probability on the value of r.  A smart guess will
 mean we need fewer points to converge (see example).  

P(H|N,r) is the Binomial distribution: 

€ 

P(H |N,r) =
N!

H!(N − H)!
rH (1− r)N −H

If we take P(r)=const  (all values of r equally likely in range), then 

€ 

P(r |H,N) =
P(H | r,N)P(r)

P(H | r,N)P(r)dr
0

1
∫

=

N!
(N − H)!H!

rH (1− r)N −H

N!
(N − H)!H!

rH (1− r)N −H dr
0

1
∫
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Hit or Miss Integration 

€ 

P(r |H,N) =
(N +1)!

H!(N − H)!
rH (1− r)N −H

€ 

px (1− p)n−x dp
0

1
∫ =

x!(n − x)!
(n +1)!

Note maximum at r=H/N 

The result is a β function, and for integer H,N reduces to  

For the integration, we use 

The expectation value and variance are: 

€ 

< r >=
(N +1)!

H!(N − H)!0

1
∫ rH +1(1− r)N −H dr =

(N +1)!
H!(N − H)!

(H +1)!(N − H)!
(N + 2)!

=
H +1
N + 2

€ 

σ 2 =
(H +1)(N − H +1)
(N + 3)(N + 2)2

=< r > (1− < r >) 1
N + 3
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Hit or Miss Integration 

We are interested in large N.  In this case, 

€ 

ˆ r ≈ H
N

var(H) ≈ Nˆ r (1− ˆ r ) var(r) ≈ ˆ r (1− ˆ r )
N

So width of P(r) decreases as 

€ 

1
N

€ 

ˆ I = ˆ r Ω Uncertainty also scales as 

€ 

1
N
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Example 

Let’s integrate the following function as an example: 

€ 

h(x) = cos(50x) + sin(20x)[ ]2 0 ≤ x ≤ 1

We can do this analytically, which is useful for studying how well
 our technique is working.  The answer is: 

With our limits, this gives: I=0.9652 
http://www.teachers.ash.org.au/mikemath/resources/calculus.html 
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Example 
Here’s the code: 
* Generate some uniformly distributed random  
* numbers 
* 
      Call Ranlux(rvec,10000) 
      Call Ranlux(rvec1,10000) 
* 
      Igood=0 
      Do I=1,10000 
* the x coordinate is generated flat 
         x=rvec(I) 
         If (rvec1(I).le.testfun(x)/cover(x))  
     &       Igood=Igood+1 
         r=float(Igood+1)/float(I+2) 
         area=r*4. 
         error=area-0.9652 
         errorest=sqrt(r*(1-r)/float(I+3))*4. 
         write (25,*) I,x,r,area,error,errorest 
* 
      Enddo 

    Real Function testfun(x) 
* 
      Implicit None 
      real x 
* 
      testfun=(cos(50*x)+sin(20*x))**2 
* 
      return 
      end 
* 
      Real Function cover(x) 
* 
      Implicit None 
      real x 
* 
      cover=4. 
* 
      return 
      end 
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Example 
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Example 

The known values 

The calculated estimate 

The calculated 1 sd
 uncertainty band 

It is important that we can
 estimate the uncertainty ! 
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Several Dimensions 

The hit-or-miss algorithm is easily extended to several
 dimensions, and complicated integration regions.  Consider a
 region defined by the intersection of a torus with the edge of a
 box: 

€ 

z2 + ( x2 + y2 − 3)2 ≤ 1 x ≥ 1 y ≥ −3

From  Numerical Recipes in Fortran 77, 2nd Edition, W. Press et al. 
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Example 

Suppose we want to evaluate the mass: 

€ 

M = ρ dxdydz
Ω
∫

If the density is uniform, we can just calculate the volume of the
 object by simulating random numbers in a 3D box (1<x<4;
 -3<y<4; -1<z<1) and checking if the points are inside our volume. 
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Example 

Suppose the density ρ is not a constant.  How do we proceed ? 
We can supply a covering function for the density and draw r.n.’s
 in 4 dimensions…  Let’s look instead at the next method. 

Sample-Mean Monte Carlo method.  The basic idea here is to
 realize that an integral can be thought of as the expectation value
 of some random variable: 

€ 

I = g(x) dx
a

b
∫ =

g(x)
f (x)a

b
∫ f (x) dx = E g(x)

f (x)
 

  
 

  

We require f(x)>0 when g(x)≠0, and f(x) is a pdf.  The simplest
 case is to take  

€ 

f (x) =
1

b − a
a < x < b

0   otherwise
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Sample-Mean Monte Carlo 

Then 

€ 

I = (b − a)E g(x)[ ]

We can therefore estimate the integral as 

€ 

ˆ I = (b − a) 1
N

g(xi )
i=1

N
∑     where x are generated according to f (x) =

1
b − a

In several dimensions, this becomes 

  

€ 

ˆ I = 1
N

g( x i )
f ( x i )i=1

N
∑     where  x i are generated according to f (  x )

We can calculate the variance of the method as follows: 

€ 

var(ˆ I ) = var (b − a) 1
N

g(xi )
i=1

N
∑

 
 

 
 

=
b − a

N
 
 

 
 

2

var g(xi )
i=1

N
∑  
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Sample-Mean Monte Carlo 

Recall that we have: 

€ 

var(g(x)) = E[g(x)2]− E[g(x)]2

where the expectation value has to be taken over the pdf, so 

€ 

var g(xi )
i=1

N
∑  

 
 = E g(xi )

i=1

N
∑  

 
 

2 

 
 

 

 
 − E g(xi )

i=1

N
∑  

 
 

 
  

 
  

2

                     = E Ng2(x) + (N 2 − N)g(xi )g(x j≠ i )[ ]− E Ng(x)[ ]2

                     = NE[g2(x)] + (N 2 − N)E[g(x)]2 − N 2E[g(x)]2

                     = N E[g2(x)]− E[g(x)]2( )

                    = N g2(x) 1
(b − a)

dx
a

b
∫ −

I2

(b − a)2
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Sample-Mean Monte Carlo 

Putting the pieces together, we find: 

€ 

var(ˆ I ) =
b − a

N
 
 

 
 

2

var g(xi )
i=1

N
∑  

 
 =

b − a
N

 
 

 
 

2

N g2(x) 1
(b − a)

dx
a

b
∫ −

I2

(b − a)2
 

 
 

 

 
 

         =
1
N

(b − a) g2(x) dx
a

b
∫ − I2 

  
 
  

So again the variance decreases as 1/N. Let’s try it out on our
 previous function: 

€ 

h(x) = cos(50x) + sin(20x)[ ]2 0 ≤ x ≤ 1
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Sample-Mean Monte Carlo 

Looks like the sample-mean
 method is converging more
 quickly.  Let’s see if we can
 understand why. 



IMPRS  16-19 Jan 2012 Monte Carlo Methods 70 

Efficiency of the Method 

We define the relative efficiency for two methods as follows: 

€ 

ε =
t1 var(ˆ I 1)
t2 var(ˆ I 2)

Let’s compare the hit-or-miss and sample-mean methods: 

€ 

var(ˆ I 1) = Ω2 var(ˆ r ) = Ω2 E[r](1− E[r])
N

= Ω2 I /Ω 1− I /Ω( )
N

          =
I(Ω− I)

N
=

I(c(b − a) − I)
N

=
1
N

c(b − a)I − I2[ ]

Hit-or-miss 

€ 

var(ˆ I 2) =
1
N

(b − a) g2(x) dx
a

b
∫ − I2 

  
 
  

Sample-mean 

€ 

cI = cg(x) dx
a

b
∫ ≥ g2(x) dx

a

b
∫      because  c ≥ g(x) So sample-mean has

 smaller variance 
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Importance Sampling 

We look at techniques which have been developed to improve the
 MC integration.  This means reducing the variance for a fixed
 number of iterations.   Many techniques have been invented.  We
 start with the most common. 

In importance sampling, we concentrate the sampling in the
 region which contribute the most to the integral.  We somehow
 need to use extra information to tell us where this ‘most important
 region’ is.   

We start with the expression for the Sample-Mean method: 

€ 

I = g(x) dx
a

b
∫ =

g(x)
f (x)a

b
∫ f (x) dx = E g(x)

f (x)
 

  
 

  

Except that now we will not take a flat f(x) but somehow choose it
 carefully so the larger values of g(x) are preferentially sampled. 
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Importance Sampling 

Our estimate for I is 
  

€ 

ˆ I = 1
N

g( x i )
f ( x i )i=1

N
∑     for several dimensions

It is straightforward to show that the minimum variance is
 achieved when 

  

€ 

f ( x ) =
g(  x )

g(  x ) d x ∫

Or for  
  

€ 

g( x ) > 0 f ( x ) =
g( x )

g( x ) d x ∫
=

g(  x )
I

But this requires knowing I, which is what we want to find ! 

The message is, however, make f as close as possible to g 
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Example 

Let’s go back to the integration over the truncated torus, and now
 assume that we have a density function which is a strong
 function of z: 

€ 

ρ(z) = e5z

In the sample-mean method, we would solve the integral as
 follows: 

  

€ 

ˆ I = 1
N

g( x i )
f ( x i )i=1

N
∑     for several dimensions

where we set: 

€ 

f (x,y,z) =
1
Δx

1
Δy

1
Δz

=
1

3 ⋅ 7 ⋅2
=
1
42

and 

€ 

g(x,y,z) =
e5z z2 + ( x2 + y2 − 3)2 ≤ 1
0 otherwise
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Example 

We can estimate the uncertainty by numerically looking at how our
 estimate of the integral varies.  For this, we consider subsamples
 of 100 iterations (as an example) and look at the variation of
 these estimates relative to the average of all. 

€ 

var[ˆ I ] ≈ 1
N −1

ˆ I i − ˆ I all[ ]
i=1

N
∑

2

where 
  

€ 

ˆ I j =
1

100
g( x i )
f ( x i )i=1

100
∑

we expect the distribution of the subsample means to be
 Gaussian distributed (Central Limit Theorem) 

The uncertainty estimate on the integral would then be 

N-1 ‘degrees-of-freedom’ 

€ 

σ I ≈
var[ˆ I ]

N
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Example 

€ 

f (x,y,z) =
1
3
1
7

4
e4 − e−4

e4 z 
 

 
 
1< x < 4;−3 < y < 4;−1< z < 1

 x=1.+3*rvec(I) 
 y=-3.+7*rvec(I+1) 
 z=alog(rvec(I+2)*(exp(4.)-exp(-4.))+exp(-4.))/4. 

We will compare our ‘Sample-Mean’ estimate with an estimate
 where use use importance sampling.  Let us try 

To get this from a uniform distribution, need 

€ 

F(z) =
4

e4 − e−4
e4 ′ z  

 
 
 

d ′ z 
−1

z
∫ =

e4 z − e−4

e4 − e−4

z(U) = F −1(U) =
1
4
ln e4 − e−4( )U + e−4[ ]



IMPRS  16-19 Jan 2012 Monte Carlo Methods  76 

Example 

€ 

σ I ≈
var[ˆ I ]

N
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Exercises 

1.  Consider the following integral: 

a)  Evaluate I using the hit-or-miss method, along with the error estimate.  Set up
 your program to stop when the estimated error is less than 1%. 

b)  Evaluate I using the Sample-Mean method, along with an error estimate. 
c)  Evaluate I with an e-3x weighting.  Compare the integral and estimated error to

 the previous two methods. 

2.  The LHC Collaborations say they want 5σ evidence for claiming the existence of the
 Higgs.  Estimate a minimum number of background events which must be
 generated to be able to claim that the probability of a background fluctuation is less
 than this number.  

€ 

I = e−3x sin3 x dx
0

10
∫
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Monte Carlo Optimization 

€ 

maxh(θ)
θ ∈Θ

We want to solve problems of the sort 

Some numerical techniques for doing this (steepest descent,
 conjugate gradient, Newton-Raphson) work well in a small
 number of dimensions, but not in large dimensional spaces. 
 They also require some analytic knowledge of the function to
 work well. 

Here we consider Monte Carlo methods.  First part of lecture
 follows: Monte Carlo Statistical Methods, C. Robert, G. Casella, 2nd Ed. Chapter 5. 
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Stochastic Exploration 

Brute force: 
•  generate values of Θ using a uniform distribution, and find the
 maximum using the approximation: 

€ 

max
θ ∈Θ

h(θ) ≈ h* = max(h(u1),h(u2),...,h(um )) ui ~UΘ

If h* = h(u*), θ* ≈ u*

 This will always work, but it may be extremely slow. Obviously, if
 we can sample according to h(θ) we will be much more efficient. 

 Let’s try it out on our old friend: 

€ 

h(x) = cos(50x) + sin(20x)[ ]2
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Stochastic Exploration 
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Stochastic Exploration 

Let’s look at a somewhat more complicated function: 

€ 

h(x,y) = x sin(20y) + y sin(20x)[ ]2 cosh(sin(10x)x) +

              x cos(10y) − y sin(10x)[ ]2 cosh(cos(20y)y)

Many local minima 
Global minimum at (0,0) 



IMPRS  16-19 Jan 2012 Monte Carlo Methods 82 

Stochastic Exploration 

About 40000 iterations
 needed to reach real
 minimum.  May not be
 stable. 

Can we do better ? 

Have principle problem that many of the
 local minima have minimum value very
 close to the absolute minimum. 
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Random Walk in 1-D 

0 5 -5 

5 

10 Some possible
 paths 

First question: what is the probability 
to be at x after n steps ? 

Let n+ represent the number of steps 
in the +x direction and n- the number 
of steps in the -x direction.  

Note that n+x must be even 

€ 

n+ − n− = x n+ + n− = n
so
n+ = (n + x) /2 n− = (n − x) /2

83 
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Random Walk in 1-D 

€ 

                               P(n+) =
n
n+

 

 
 

 

 
 pn

+ qn−n
+ =

n!
n+!(n − n+)!

pn
+ qn−n

+

so

< n+ >= np             < n+
2 >= npq + n2 p2          σ n

+

2 = npq  
Now for x
< x >=< 2n+ − n >= 2 < n+ > −n = n(2p −1)

< x2 >=< (2n+ − n)2 >= 4 < n+
2 > −4 < n+ > n + n2 = 4npq + n2(1− 4 pq)

σ x
2 = 4npq

The distribution for n+ is a Binomial distribution: 

84 
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Random Walk in 1-D 

We now look at the probability of returning to the origin.  First, 
calculate the probability to be at x after n steps. 

€ 

   P0x
n =

n!
(n + x) 2( )! (n − x) 2( )!

p(n+ x ) 2q(n− x ) 2

€ 

2m = n  P00
2m =

(2m)!
m!m!

pmqm

€ 

m! ≈  mm +1/ 2e−m 2π

P00
2m ≈

(2m)2m +1/ 2e−2m

m2m +1e−2m 2π
pmqm =

22m (pq)m

mπ
=
(4 pq)m

mπ

For large n, use Stirling’s approximation: 

85 
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Random Walk in 1-D 

€ 

P00
2m ≈

(4 pq)m

mπ

Note that pq≤1/4, so that            →0 for m→∞.  The probability  to 
be at the origin goes to 0.  However, the number of returns to the 
origin after N steps 

The state is recurrent - there is probability one of eventually 
returning to the origin.  Only true of p=q=1/2. 

€ 

R(N) = P00
2m

m=0

N/2
∑ =

(2m)!
m!m!m=0

N/2
∑ pmqm

€ 

R(N) =
(2m)!
m!m!m=0

N/2
∑ (1/2)2m =

(N +1)!

2N (N
2
!)2

N→∞
 →   

2N
π

Taking p=q=1/2, 

Stirling’s 
approx. 

€ 

P00
2m

86 
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Random Walk in 2,3-D 

In 1-D 

€ 

P00
2m ∝

1
mπ

In 2-D 

€ 

P00
2m ∝

1
mπ

 
 

 
 

2

P00
2m

m=0

∞
∑ = ∞

So the origin is recurrent 

In 3-D 

€ 

P00
2m ∝

1
mπ

 
 

 
 

3

P00
2m

m=0

∞
∑ < ∞

So the origin is not recurrent.  There is a finite probability of never
 returning to the origin. 

87 
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Markov Chains 

We set out the basic definitions and properties of Markov Chains,
 which underlie Markov Chain Monte Carlos (MCMC).   

For a good review, see: First Course in Stochastic Processes, S. Karlin and H. Taylor, Academic Press 

Markov Chain Xt-1 Xt Xt+1 

Random number Ut-1 Ut Ut+1 Ut iid from uniform
 dist between (0,1) 

Xt~π(x) 

The Xt are a sequence of random numbers, with limiting
 distribution π(x), where π(x) is the desired distribution to sample
 from.  Often, have no good techniques available to perform this
 sampling. 
Main feature of Markov Chains - can be easily generalized to
 large number of dimensions. 
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Markov Chains 

Basic Property of a Markov Process: 

  

€ 

Pr{a < Xt ≤ b | Xt1 = x1,,Xtn = xn} = Pr{a < Xt ≤ b | Xtn = xn}
t1 < t2 < < tn < t

I.e., the probability distribution for the variable X depends only the
 current state, not on any previous behavior.  For a finite or
 denumerable state space (which is always the case on a
 computer),  have a Markov Chain.  E.g., Poisson process is a
 continuous time Markov Chain. 
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Markov Chain Monte Carlo 

Basic Limit Theorem (for aperiodic, irreducible and recurrent
 Markov Chains) 

€ 

lim
n→∞

Pii
n =

1

nfii
n

n=0

∞
∑

= π i lim
n→∞

Pji
n = Pii

n = π i

€ 

lim
n→∞

Pjj
n = π j = π iPij

i=0

∞
∑ π i = 1

i=0

∞
∑

π is the stationary distribution.  Ergodic - does not depend on the
 starting point.  Strongly ergodic class, all πi>0. 

Detailed balance: 

€ 

π iPij = π jPji Sufficient condition for πi  to be
 stationary distribution of Pij 

Note that: Eigenvalue equation 
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Markov Chain Monte Carlo 

If we have an ergodic Markov chain with π~f, then 

€ 

lim
N→∞

1
N

h(Xi )
i=1

N
∑ = E f [h(X)]

Note that this is true even though the samples are not iid.  Also,
 the convergence rate also scales as  

€ 

O(1/ N )

€ 

π iPij
i= 0

∞
∑ = π jPji

i= 0

∞
∑          If have detailed balance

           = π j Pji
i= 0

∞
∑

           = π j     since  Pji
i= 0

∞
∑ = 1

Proof: 

q.e.d. 

So detailed balance is enough to prove stationarity. 
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Markov Chain Monte Carlo 

€ 

π i( )i=0
∞Goal of MCMC is to find a chain with           =pdf of interest. 

 Sampling according to the Markov Chain will then correspond to
 sampling from the desired pdf. 

Markov Chain Xt-1 Xt Xt+1 

Random number Ut-1 Ut Ut+1 Ut iid from uniform
 dist between (0,1) 

Xt~π(x) 

Define Markov Chain Monte Carlo as any method producing an
 ergodic Markov chain Xt whose stationary distribution in the
 distribution of interest. 
The original algorithm is due to Metropolis. Later generalized by
 Hastings. 
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Markov Chain Monte Carlo 

Uses: 
1.  Simulation of physical system which follows a known

 probability rule 

2.  Calculation of expectation values in a large number of
 dimensions 

3.  Optimization with an annealing scheme 

4.  Learning (probability calculations) 

€ 

x ~ π (x)    where x is a configuration

€ 

E[g(x)] = g(x)π (x)dx∫

€ 

x* = argmaxπ (x)
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Nicholas Metropolis 

From Wikipedia, the free encyclopedia 

Nicholas Constantine Metropolis (June 11, 1915 – October 17, 1999) was an American
 mathematician, physicist, and computer scientist. 

Metropolis received his B.Sc. (1937) and Ph.D. (1941) degrees in experimental physics
 at the University of Chicago. Shortly afterwards, Robert Oppenheimer recruited him
 from Chicago, where he was at the time collaborating with Enrico Fermi and Edward
 Teller on the first nuclear reactors, to the Los Alamos National Laboratory. He arrived in
 the Los Alamos, on April 1943, as a member of the original staff of fifty scientists. After
 the World War II he returned to the faculty of the University of Chicago as an Assistant
 Professor. He came back to Los Alamos in 1948 to lead the group in the Theoretical (T)
 Division that designed and built the MANIAC I computer in 1952 and MANIAC II in
 1957. (He chose the name MANIAC in the hope of stopping the rash of such acronyms
 for machine names, but may have, instead, only further stimulated such use.) From
 1957 to 1965 he was Professor of Physics at the University of Chicago and was the
 founding Director of its Institute for Computer Research. In 1965 he returned to Los
 Alamos where he was made a Laboratory Senior Fellow in 1980. 
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Nicholas Metropolis 

Metropolis contributed several original ideas to mathematics and physics. Perhaps the
 most widely known is the Monte Carlo method. Also, in 1953 Metropolis co-authored the
 first paper on a technique that was central to the method known now as simulated
 annealing. He also developed an algorithm (the Metropolis algorithm or Metropolis
-Hastings algorithm) for generating samples from the Boltzmann distribution, later
 generalized by W.K. Hastings. 
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Metropolis Algorithm 

1.  Suppose we have Xt=x.  Generate a proposed new value, Y,
 according to a symmetric function g(y,x).  Symmetric means
 g(y,x)=g(x,y). 

2.  Calculate r=f(y)/f(x), where f(x) is the desired density
 distribution.  Generate a random number U from a uniform
 distribution between 0,1.  Then,  

                       set Xt+1=y if U<r;          
                    else, Xt+1=x 

Note that all steps with f(y)>f(x) are accepted.  If f(y)<f(x), take
 new position with probability r, else stay in current state. 

Look at the example in the original Metropolis et al. paper:  
N. Metropolis et al., J. Chem. Phys. 21 (1953) 1087. 
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Example 

Simple hard-sphere model for gas in 2-D.  Spheres are placed
 initially on a regular lattice, then allowed to move.  Evaluate the
 number of particles within a radius r from any particle. 

K molecules 

A 

B 

Current state given by: 

€ 

(xi,yi ),i = 1,...,K{ }

Target distribution uniform for all allowed configurations (non
-overlapping balls, within boundaries) 

Sphere diameter d 
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Example 

Algorithm: 
1.  Pick each particle in succession (i) 
2.  Perturb its position (xi→xi+δ1, yi→yi+δ2) where the

 perturbations are taken from a uniform distribution from [-s,s].  
3.  Apply periodic boundary conditions - if the particle is outside

 the square, it re-enters from the opposite side. 
4.  Calculate the change in energy of the system.  If ΔE<0, move

 is allowed and the particle is placed in the new position.  If  
     ΔE>0, accept the move with probability exp(- ΔE/kT). 
5.  Evaluate quantity of interest using sample mean 

€ 

F = Fe−
E

kT d2N pd2Nq∫

e−
E

kT d2N pd2Nq∫
→ F ≈ 1

M
Fj

j =1

M
∑
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Example 

Starting Distribution Parameters: 
100 spheres 
Box side 0.4 
Sphere radius = 0.01 
Maximum step size 0.02 
(in each direction) 

After 100 cycles 
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Example 
Let us see how quickly we reached an equilibrium situation.  To
 study this, we look at the distribution of minimum separation for
 the nearest neighbor for all particles, and see how this distribution
 varies over cycles. 
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Example 

Here is the variation of
 the r.m.s. of those
 distributions versus the
 cycle number for
 different values of the
 maximum step size. 
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Metropolis-Hastings Algorithm 

The original algorithm is due to Metropolis. Later generalized by
 Hastings.  Hastings showed that it is not necessary to use a
 symmetric proposal distribution, and proposed that the proposed
 new state can be generated from any q(y|x). 

Of course, the speed with which we reach the equilibrium
 distribution will depend on the choice of the proposal function. 
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Metropolis-Hastings Algorithm 

Given xi: 
1.  Generate Yi according to q(y|xi) 
2.  Take 

€ 

Xi+1 =
Yi          with probability ρ(xi,Yi )
xi          with probability 1− ρ(xi,Yi )
 
 
 

where

ρ(x,y) = min f (y)
f (x)

q(x | y)
q(y | x)

,1 
 
 

 
 
 

f is the target density and q is the instrumental or proposal
 distribution.  Note that if                                                  then we
 always accept the new step.  Else, it is accepted only with some
 probability.  If the proposal distribution is symmetric, q(y|x)=q(x|y)
 then probability only depends on ratio f(y)/f(x). 

€ 

f (yi )q(xi | yi ) > f (xi )q(yi | xi )
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Example 

In this example, we look at the importance of the proposal
 distribution.  Generate a Gaussian distribution with zero mean
 and σ=1 from a random walk Markov Chain with a step derived
 from a flat distribution as follows: 

1.  Generate a number from a flat distribution between [-s,s]; call
 it ε.  Now set y=xt+ ε 

2.  Calculate                               (note that q(y|x)=q(x|y)) 

3.  Set xt+1=y if    U<ρ, where U is a r.v. from a uniform distribution
 between (0,1) 
€ 

ρ = min e−y
2 / 2

e−x
2 / 2 ,1

 
 
 

 
 
 

We will look to see how quickly we converge to the desired
 distribution depending on s. 
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Example 
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BAT →  Software package for solving data analysis problems 

•  The idea behind BAT 

  Merge common parts of every Bayesian analysis into a software package 

  Provide flexible environment to phrase arbitrary problems 

  Provide a set of well tested/tuned numerical algorithms and tools 

  C++ based framework (flexible, modular) 

  Interfaces to ROOT, Cuba, Minuit, user defined, .. 

  can be downloaded from:  http://www.mppmu.mpg.de/bat 

Code structured on Bayes' formula for parameter estimation 
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The idea 

Separate the common parts from the rest 
  case specific: the model and the data 

  common tools: all the rest 

Define MODEL 
  define parameters 
  define likelihood 
  define priors 

Read DATA 
  from text file, ROOT tree,

 user defined (anything) 

  create model 
  read-in data 

USER DEFINED 

  normalize 
  find mode / fit 
  test the fit 
  marginalize wrt. one or

 two parameters 
  compare models 

  provide nice output 

MODEL 
INDEPENDENT 
(common tools) 
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Markov Chain Monte Carlo (MCMC) 

  generally it is very difficult to obtain the full posterior PDF 
-  number of parameters can be large 
-  different input data will result in a different posterior 

  also the visualization of the PDF in more than 3 dimensions is 
rather impractical and hard to understand 

  usually one looks at marginalized posterior wrt. one, two or 
three parameters 
-  a projection of the posterior onto one (two, three) 

parameter 
-  integrating all the other parameters out 
-  still numerically difficult 

  the Markov Chain Monte Carlo revolutionized the area of 
Bayesian analysis 
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Scanning parameter space with MCMC 

  In Bayesian analysis use MCMC  
to scan parameter space of  

  MCMC converges towards  
underlying distribution 

  Marginalize wrt. individual 
parameters while walking 
→ obtain 

  Find maximum (mode) 
  Uncertainty propagation 

109 

!λ

P (λi| "D) =
∫

P ("λ| "D)d"λj !=i
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Analysis of Markov Chain 

  the full chain(s) can be stored for further analysis and 
parameter tuning as ROOT  TTree(s) 
-  allows direct usage of standard ROOT tools for analysis 

  Markov Chain contains the complete information about the 
posterior 
(except for the normalization) 

par0 vs. iteration 

par0 vs. par1 
for every 
iteration 

convergence reached!
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Obtaining marginalized distributions from TTree 

root[12] chain0 -> Draw(“par0:par1”) 

root[11] chain0 -> Draw(“par0”) 
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Exercises 
1.  Consider a random walk on the integers from -5,5 with transition probabilities: 

2.  Write a Markov Chain Monte Carlo to produce numbers according to a Poisson
 distribution with mean 0.1, 20.  

3.  Optional - Perform the hard sphere simulation discussed in class for different choices
 of parameters.  Once you have it working for hard spheres, think how you could
 modify the program to deal with ‘soft-spheres’.  Here you will need to use a potential
 energy function (find a reasonable one). 

€ 

Pij =

1
2

    if i = j,i = −4,...,4

1
4

    if j = i ±1,i = -4,...,4

3
4

    i = j = −5 or 5

1
4

    i = −5, j = −4

1
4

    i = 5, j = 4 

0     otherwise

 

 

 
 
 
 
 
 

 

 
 
 
 
 
 

Find the invariant distribution.  You can use a
 Markov Chain MC to give you a hint, and prove
 the final result mathematically.  Try different
 starting points, and determine how many steps
 are needed before the sampling looks like
 sampling from the invariant distribution. 


