

An Introduction to SUSY breaking

From Theory to the LHC

Joerg Jaeckel

Overview

- 1. SUSY (breaking) basics
 - Reminder: SUSY
 - · SUSY
 - Simple model

2. SUSY breaking for real

- O'Raifeartaigh Model
- Theory and pheno constraints and features
- R-axion, Meta stability I

3. SUSY breaking and the SM

- Hidden Sector 5459
- Gauge + Gravity mediation
- Meta stability II

• 4. SUSY @ the LHC

- RG Evolution
- Direct searches
- SUSY and the Higgs

SUSY (breaking) basics

Teaser: Why SUSY?

SUSY

Symmetry between bosons and fermions

1. SUSY (even when softly broken) removes quadratic divergencies in the scalar sector.

> → improves consistency of the theory, helps with the hierarchy problem

1. SUSY (even when softly broken) removes quadratic divergencies in the scalar sector.

> → improves consistency of the theory, helps with the hierarchy problem

Without SUSY:

$$v_{EW}^2 \sim m_{H,tree}^2 + \cdots$$

 $\sim \Lambda_{\mathrm{UV}}^2 \sim M_P^2$ $\gg v_{EW}^2 \sim (100 \,\mathrm{GeV})^2$

→ We need O(10³²) finetuning!!

1. SUSY (even when softly broken) removes quadratic divergencies in the scalar sector.

> → improves consistency of the theory, helps with the hierarchy problem

SUSY:

1. SUSY (even when softly broken) removes quadratic divergencies in the scalar sector.

> → improves consistency of the theory, helps with the hierarchy problem

2. SUSY improves the unification of the SM gauge couplings → Grand Unification

University of Durham

3. Supersymmetry breaking triggers electroweak symmetry breaking in the Standard Model
→ explain electroweak symmetry breaking

Cosmology applications

SUSY @ (0.1-1)TeV scale → Many new particles with such masses

Lightest can be stable and can be produced in the early universe DM candidate

Why SUSY V

University of Durham

5. Supersymmetry is required

 in string theory
 (a UV-complete underlying
 description unifying
 with quantum gravity)
 → SUSY appears as natural ingredient.

6. Its pretty!

Unique extension of Poincare algebra

Why NOT SUSY

Because it must be broken!

Because... ...we haven't seen the selectron

Spin 0, charge=-1

$m_{\widetilde{e}} = 511 \, \mathrm{keV}$

Why NOT SUSY

Because it must be broken!

Because... ...we haven't seen the selectron

Spin 0, charge=-1

Disclaimer: Not complete!!!!!!

Mainly SUSY field theory
 Only passing comments on (super-)gravity

Why? I don't understand gravity ;-).

SUSY basics

Poincare group

Translations + LT

translations :
$$\Phi(x) \to \Phi'(x) = e^{i a^{\rho} P_{\rho}} \Phi(x)$$

LT : $\Phi(x) \to \Phi'(x) = e^{\frac{i}{2} \omega^{\rho \sigma} M_{\rho \sigma}} \Phi(x)$

• P, M fulfill Poicare algebra

$$\begin{array}{lll} \left[P^{\rho},P^{\sigma}\right] &=& 0 \\ \left[P^{\rho},M^{\nu\sigma}\right] &=& i(g^{\rho\nu}P^{\sigma}-g^{\rho\sigma}P^{\nu}) \\ \left[M^{\mu\nu},M^{\rho\sigma}\right] &=& -i(g^{\mu\rho}M^{\nu\sigma}+g^{\nu\sigma}M^{\mu\rho}-g^{\mu\sigma}M^{\nu\rho}-g^{\nu\rho}M^{\mu\sigma}) \end{array}$$

Poincare group

• E.g. for a spin $\frac{1}{2}$ field

$$P^{\rho} = i \partial^{\rho}; \qquad M^{\rho\sigma} = i(x^{\rho}\partial^{\sigma} - x^{\sigma}\partial^{\rho}) + \frac{i}{4}[\gamma^{\rho}, \gamma^{\sigma}]$$

- Nature seems to respect Poincare group
- Natural to ask for bigger symmetry
- Example gauge symmetry

Fairly trivial extension

- Nature seems to respect Poincare group
- Natural to ask for bigger symmetry
- Example gauge symmetry

$$\begin{bmatrix} T^a, T^b \end{bmatrix} = i f^{abc} T^c$$
$$\begin{bmatrix} T^a, P^\rho \end{bmatrix} = 0$$
$$\begin{bmatrix} T^a, M^{\rho\sigma} \end{bmatrix} = 0$$

Can we have non-trivial one?

SUSY is non-trivial ext. of Poincare

- Not with commutators/bosonic generators (Coleman Mandula)
 - Need anticommutators/fermionic generators

$$Q_{\alpha}|\mathrm{bos}\rangle = |\mathrm{ferm}\rangle_{\alpha}; \qquad Q_{\alpha}|\mathrm{ferm}\rangle^{\alpha} = |\mathrm{bos}\rangle$$

Action of symmetry transforms bosons ←→ fermions

Supersymmetry!

SUSY is non-trivial ext. of Poincare

Commutators and anticommutators

 $[Q_{\alpha}, P^{\rho}]$ $2(\sigma^{\rho})_{\alpha\dot{\beta}}P_{\rho}$ $\{Q_{\alpha}, Q_{\dot{\beta}}\}$ $= -i(\sigma^{\rho\sigma})_{\alpha}^{\ \beta}Q_{\beta}$ $[M^{\rho\sigma}, Q_{\alpha}]$ $= \{\bar{Q}_{\dot{\alpha}}, \bar{Q}_{\dot{\beta}}\} = 0$ $\{Q_{\alpha}, Q_{\beta}\}$

SUSY is non-trivial ext. of Poincare

Commutators and anticommutators

$$[Q_{\alpha}, P^{\rho}] = 0$$

$$\{Q_{\alpha}, \bar{Q}_{\dot{\beta}}\} = 2(\sigma^{\rho})_{\alpha\dot{\beta}}P_{\rho}$$

$$[M^{\rho\sigma}, Q_{\alpha}] = -i(\sigma^{\rho\sigma})_{\alpha}^{\ \beta}Q_{\beta}$$

$$\{Q_{\alpha}, Q_{\beta}\} = \{\bar{Q}_{\dot{\alpha}}, \bar{Q}_{\dot{\beta}}\} = 0$$

Restrict ourselves to so-called N=1 SUSY \rightarrow 2Q and 2 \bar{Q}

Superspace

- We have added 4 additional fermionic "one-index" generators
 → indexwise similar to translations P^µ
- It makes sense to add additional coordinated to our space-time to allow "supertranslations"

$$egin{aligned} x^{\mu} &
ightarrow X = \left(x^{\mu}, heta^{lpha}, ar{ heta}^{\dot{lpha}}
ight) \ egin{aligned} \left[x^{\mu}
ight] = -1 & \left[heta^{lpha}
ight] = \left[ar{ heta}^{\dot{lpha}}
ight] = -rac{1}{2} \end{aligned}$$

Super-field

Can consider fields(=functions) on superspace

$$\Omega(X) = \Omega(x, \theta, \bar{\theta})$$

The most general superfield

$$\Omega(x,\theta,\bar{\theta}) = c(x) + \theta\psi(x) + \bar{\theta}\bar{\psi}'(x) + (\theta\theta)F(x) + (\bar{\theta}\bar{\theta})F'(x) + \theta\sigma^{\mu}\bar{\theta}v_{\mu}(x) + (\theta\theta)\bar{\theta}\bar{\lambda}'(x) + (\bar{\theta}\bar{\theta})\theta\lambda(x) + (\theta\theta)(\bar{\theta}\bar{\theta})D(x)$$

"Supertranslations"

SUSY transformation + translation

$$S(a,\zeta,\bar{\zeta}) \equiv e^{i\left(\zeta^{\alpha}Q_{\alpha}+\bar{\zeta}_{\dot{\alpha}}\bar{Q}^{\dot{\alpha}}+a^{\mu}P_{\mu}\right)}$$

$$S(a,\zeta,\bar{\zeta})S(x,\theta,\bar{\theta}) = S(x^{\mu} + a^{\mu} + i\,\zeta\sigma^{\mu}\bar{\theta} - i\,\theta\sigma^{\mu}\bar{\zeta},\,\theta + \zeta,\,\bar{\theta} + \bar{\zeta})$$

$$S(A)S(X) = S(A + X)$$

Super-field transformations

Pure translation

$$\phi(x) \to S(a,0,0)\phi(x)S^{-1}(a,0,0) = e^{ia^{\mu}P_{\mu}}\phi(x)e^{-ia^{\mu}P_{\mu}} = \phi(x+a)$$

$$SUSY + translation$$

$$A \cdot P$$

$$\Omega(x, \theta, \bar{\theta}) \rightarrow e^{i\left(\zeta^{\alpha}Q_{\alpha} + \bar{\zeta}_{\dot{\alpha}}\bar{Q}^{\dot{\alpha}} + a^{\mu}P_{\mu}\right)} \Omega(x, \theta, \bar{\theta}) e^{-i\left(\zeta^{\alpha}Q_{\alpha} + \bar{\zeta}_{\dot{\alpha}}\bar{Q}^{\dot{\alpha}} + a^{\mu}P_{\mu}\right)}$$

$$= \Omega(x^{\mu} + a^{\mu} + i\zeta\sigma^{\mu}\bar{\theta} - i\theta\sigma^{\mu}\bar{\zeta}, \theta + \zeta, \bar{\theta} + \bar{\zeta})$$

$$A + X$$

Super-field transformations II

SUSY + translation

$\begin{aligned} \Omega(x,\theta,\bar{\theta}) &\to e^{i\left(\zeta^{\alpha}Q_{\alpha}+\bar{\zeta}_{\dot{\alpha}}\bar{Q}^{\dot{\alpha}}+a^{\mu}P_{\mu}\right)}\Omega(x,\theta,\bar{\theta}) e^{-i\left(\zeta^{\alpha}Q_{\alpha}+\bar{\zeta}_{\dot{\alpha}}\bar{Q}^{\dot{\alpha}}+a^{\mu}P_{\mu}\right)} \\ &= \Omega(x^{\mu}+a^{\mu}+i\,\zeta\sigma^{\mu}\bar{\theta}-i\,\theta\sigma^{\mu}\bar{\zeta},\,\theta+\zeta,\,\bar{\theta}+\bar{\zeta}) \\ X & A+X \end{aligned}$

Implement P, Q as differential operators

$$\Omega(x^{\mu} + a^{\mu} + i\,\zeta\sigma^{\mu}\bar{\theta} - i\,\theta\sigma^{\mu}\bar{\zeta},\,\theta + \zeta,\,\bar{\theta} + \bar{\zeta}) = e^{-i\left(\zeta^{\alpha}Q_{\alpha} + \bar{\zeta}_{\dot{\alpha}}\bar{Q}^{\dot{\alpha}} + a^{\mu}P_{\mu}\right)}\Omega(x,\theta,\bar{\theta})$$

Super-field transformations III

Expanding both sides for infinitesimal A

$$\Omega(x^{\mu} + a^{\mu} + i\,\zeta\sigma^{\mu}\bar{\theta} - i\,\theta\sigma^{\mu}\bar{\zeta},\,\theta + \zeta,\,\bar{\theta} + \bar{\zeta})$$

$$\equiv \Omega + \left(a^{\mu} + i\,\zeta\sigma^{\mu}\bar{\theta} - i\,\theta\sigma^{\mu}\bar{\zeta}\right)\partial_{\mu}\Omega + \zeta^{\alpha}\partial_{\alpha}\Omega - \bar{\zeta}_{\dot{\alpha}}\bar{\partial}^{\dot{\alpha}}\Omega$$

$$= \Omega - i\left(\zeta^{\alpha}Q_{\alpha} + \bar{\zeta}_{\dot{\alpha}}\bar{Q}^{\dot{\alpha}} + a^{\mu}P_{\mu}\right)\Omega$$

$$P_{\mu} = i\partial_{\mu}$$

$$Q_{\alpha} = i\partial_{\alpha} - \sigma^{\mu}_{\alpha\dot{\alpha}}\bar{\theta}^{\dot{\alpha}}\partial_{\mu} = iD_{\alpha}$$

$$\bar{Q}_{\dot{\alpha}} = -i\bar{\partial}_{\dot{\alpha}} + \theta^{\alpha}\sigma^{\mu}_{\alpha\dot{\alpha}}\partial_{\mu} = i\bar{D}_{\dot{\alpha}}$$

Representation of SUSY algebra

Chiral superfield

Take most general superfield

$\begin{aligned} \Omega(x,\theta,\bar{\theta}) &= c(x) + \theta\psi(x) + \bar{\theta}\bar{\psi}'(x) + (\theta\theta) F(x) + (\bar{\theta}\bar{\theta}) F'(x) + \theta\sigma^{\mu}\bar{\theta} v_{\mu}(x) \\ &+ (\theta\theta) \bar{\theta}\bar{\lambda}'(x) + (\bar{\theta}\bar{\theta}) \theta\lambda(x) + (\theta\theta) (\bar{\theta}\bar{\theta}) D(x) \end{aligned}$

• Apply covariant constraint

$$\bar{D}_{\dot{\alpha}}\,\phi(x,\theta,\bar{\theta})=0$$

Jeft handed chiral superfield

$$\begin{split} \phi(x,\theta,\bar{\theta}) &= \varphi(x) + \sqrt{2}\theta\psi(x) - i\theta\sigma^{\mu}\bar{\theta}\,\partial_{\mu}\varphi(x) + \frac{i}{\sqrt{2}}(\theta\theta)(\partial_{\mu}\psi(x)\sigma^{\mu}\bar{\theta}) \\ &- \frac{1}{4}(\theta\theta)(\bar{\theta}\bar{\theta})\partial^{\mu}\partial_{\mu}\varphi(x) - (\theta\theta)F(x) \end{split}$$

Chiral superfield

· Left handed superfield

$$\begin{split} \phi(x,\theta,\bar{\theta}) &= \varphi(x) + \sqrt{2}\theta\psi(x) - i\theta\sigma^{\mu}\bar{\theta}\,\partial_{\mu}\varphi(x) + \frac{i}{\sqrt{2}}(\theta\theta)(\partial_{\mu}\psi(x)\sigma^{\mu}\bar{\theta}) \\ &- \frac{1}{4}(\theta\theta)(\bar{\theta}\bar{\theta})\partial^{\mu}\partial_{\mu}\varphi(x) - (\theta\theta)F(x) \end{split}$$

Transformations

$$\begin{split} \delta \varphi &= \sqrt{2} \, \zeta \psi \\ \delta \psi_{\alpha} &= -\sqrt{2} \, F \, \zeta_{\alpha} - i \sqrt{2} \, \sigma^{\mu}_{\alpha \dot{\alpha}} \, \bar{\zeta}^{\dot{\alpha}} \, \partial_{\mu} \varphi \\ \delta F &= -i \sqrt{2} \, \partial_{\mu} \psi \sigma^{\mu} \bar{\zeta} = \partial_{\mu} \left(-i \sqrt{2} \, \psi \sigma^{\mu} \bar{\zeta} \right) \end{split}$$

Total derivative!!!

SUSY breaking... finally made it there!

$$\begin{split} \delta \varphi &= \sqrt{2} \, \zeta \psi \\ \delta \psi_{\alpha} &= -\sqrt{2} \, F \, \zeta_{\alpha} - i \sqrt{2} \, \sigma^{\mu}_{\alpha \dot{\alpha}} \bar{\zeta}^{\dot{\alpha}} \, \partial_{\mu} \varphi \\ \delta F &= -i \sqrt{2} \, \partial_{\mu} \psi \sigma^{\mu} \bar{\zeta} = \partial_{\mu} \left(-i \sqrt{2} \, \psi \sigma^{\mu} \bar{\zeta} \right) \end{split}$$

- Α φ vev?

$$\varphi = const, \quad \psi = 0, \quad F = 0$$

$$\delta \varphi = 0, \quad \delta \psi = 0, \quad \delta F = 0$$

SUSY preserved!

SUSY breaking

$$\begin{split} \delta\varphi &= \sqrt{2}\,\zeta\psi\\ \delta\psi_{\alpha} &= -\sqrt{2}\,F\,\zeta_{\alpha} - i\sqrt{2}\,\sigma^{\mu}_{\alpha\dot{\alpha}}\bar{\zeta}^{\dot{\alpha}}\,\partial_{\mu}\varphi\\ \delta F &= -i\sqrt{2}\,\partial_{\mu}\psi\sigma^{\mu}\bar{\zeta} = \partial_{\mu}\left(-i\sqrt{2}\,\psi\sigma^{\mu}\bar{\zeta}\right) \end{split}$$

• Which vev's break SUSY?

- An F vev?

$$\varphi = 0, \quad \psi = 0, \quad F \neq 0$$

$$\delta \varphi = 0, \quad \delta \psi = -\sqrt{2}F\zeta_{\alpha} \neq 0, \quad \forall SUSY$$

$$\delta F = 0$$
Vector superfield

Same story different constraint

$$V = V^{\dagger}$$
 Vector!

$$V(x,\theta,\bar{\theta}) = c(x) + i\,\theta\chi(x) - i\,\bar{\theta}\bar{\chi}(x) + \theta\sigma^{\mu}\bar{\theta}\,v_{\mu}(x) + i\,(\theta\theta)N(x) - i\,(\bar{\theta}\bar{\theta})N^{\dagger}(x) + i\,(\theta\theta)\bar{\theta}\left(\bar{\lambda}(x) + \frac{i}{2}\partial_{\mu}\chi(x)\sigma^{\mu}\right) - i\,(\bar{\theta}\bar{\theta})\theta\left(\lambda(x) - \frac{i}{2}\sigma^{\mu}\partial_{\mu}\bar{\chi}(x)\right) + \frac{1}{2}(\theta\theta)(\bar{\theta}\bar{\theta})\left(D(x) - \frac{1}{2}\partial^{\mu}\partial_{\mu}c(x)\right)$$

$$(4)$$

- D transforms like total derivative!
- Vev for D breaks SUSY!

SUSY breaking

1) Non-vanishing F-terms of χSF

2) Non-vanishing D-terms of vector SF

SUSY Lagrangians

SUSY Lagrangians

F terms of χSF and
 D term of VSF
 transform as total derivatives.

>
$$\int d^4x F$$
 and $\int d^4x D$

Are invariant under SUSY transformations

Can be used to build SUSY Lagrangians!

• Use Grassmann integration.

$$F = \phi \big|_{\theta\theta} = \int d^2\theta\phi$$

 $D = V \Big|_{\theta \theta \bar{\theta} \bar{\theta}} = \int d^2 \theta d^2 \bar{\theta} V$

φ_i χSF

→ W(ϕ_i), holomorphic is a χ SF

→ K(\u00fb^{\phi}, \u00eb), real

is a VSF

- φ_i χ**SF**
 - \rightarrow W(ϕ_i), holomorphic Superpotential \rightarrow K(ϕ^{\dagger}, ϕ), real Kähler potential

is a χSF

is a VSF

Construct Lagrangian

• We can combine

$$\mathcal{L} = \mathcal{L}_F + \mathcal{L}_D$$

• with

$$\mathcal{L}_{F_{i}} = \int \mathrm{d}^{2}\theta W(\phi_{i}) + \int \mathrm{d}^{2}\bar{\theta} W^{\dagger}(\phi_{i}^{\dagger})$$
$$\mathcal{L}_{D} = \int d^{2}\theta d^{2}\bar{\theta} K(\phi_{i}^{\dagger}, \phi_{i})$$

Example Wess-Zumino model

Just one field

$$W(\phi) = a\phi + \frac{m}{2}\phi^2 + \frac{y}{3!}\phi^3$$
$$K(\phi^{\dagger}, \phi) = \phi^{\dagger}\phi$$

$$\rightarrow$$

$$\mathcal{L}_{D,WZ} = F^{\dagger}F + (\partial_{\mu}\varphi)(\partial^{\mu}\varphi)^{\dagger} + \frac{i}{2}\psi\sigma^{\mu}(\partial_{\mu}\bar{\psi}) - \frac{i}{2}(\partial_{\mu}\psi)\sigma^{\mu}\bar{\psi}$$

$$\mathcal{L}_{F,WZ} = -aF - m\varphi F - \frac{m}{2}(\psi\psi) - \frac{y}{2}\varphi\varphi F - \frac{y}{2}\varphi(\psi\psi) + \text{h.c.}$$

Example Wess-Zumino model

Just one field

$$W(\phi) = a\phi + m\phi^2 + y\phi^3$$

$$K(\phi^{\dagger},\phi)=\phi^{\dagger}\phi$$

Kinetic terms for bosons and fermions

$$\mathcal{L}_{D,WZ} = F^{\dagger}F + (\partial_{\mu}\varphi)\left(\partial^{\mu}\varphi\right)^{\dagger} + \frac{i}{2}\psi\sigma^{\mu}(\partial_{\mu}\bar{\psi}) - \frac{i}{2}\left(\partial_{\mu}\psi\right)\sigma^{\mu}\bar{\psi}$$

$$\mathcal{L}_{F,WZ} = -aF - m\varphi F - \frac{m}{2}(\psi\psi) - \frac{y}{2}\varphi\varphi F - \frac{y}{2}\varphi(\psi\psi) + \text{h.c.}$$

Example Wess-Zumino model

Just one field

$$egin{aligned} W(\phi) &= a\phi + rac{m}{2}\phi^2 + rac{y}{3!}\phi^3 \ K(\phi^\dagger,\phi) &= \phi^\dagger\phi \end{aligned}$$

Kinetic terms for bosons and fermions

$$\mathcal{L}_{D,WZ} = F^{\dagger}F + (\partial_{\mu}\varphi)(\partial^{\mu}\varphi)^{\dagger} + \frac{i}{2}\psi\sigma^{\mu}(\partial_{\mu}\bar{\psi}) - \frac{i}{2}(\partial_{\mu}\psi)\sigma^{\mu}\bar{\psi}$$

$$\mathcal{L}_{F,WZ} = -aF - m\varphi F - \frac{m}{2}(\psi\psi) - \frac{y}{2}\varphi\varphi F - \frac{y}{2}\varphi(\psi\psi) + \text{h.c.}$$

No kinetic term for F! -> integrate out

Integrate out F

Quadratic in F -> enough to solve EOM

$$0 = \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} F)} - \frac{\partial \mathcal{L}}{\partial F} = -\frac{\partial \mathcal{L}}{\partial F} = -F^{\dagger} + a + m \,\varphi + \frac{y}{2} \,\varphi \varphi$$

$$F^{\dagger}F - \left(a F + m \varphi F + \frac{y}{2} \varphi \varphi F + \text{h.c.}\right) = -\left|a + m \varphi + \frac{y}{2} \varphi \varphi\right|^{2} = -\left|\frac{\partial W(\varphi)}{\partial \varphi}\right|^{2}$$

All the terms with F together give potential for the scalar field

$$V(\varphi) = \left| \frac{\partial W(\varphi)}{\partial \varphi} \right|^2 = |F|^2$$

Note: SUSY breaking

University of Durham

• F≠0 → SUSY

V(
 ♦)>0 → SUSY

If SUSY broken: positive vacuum energy!!!

Combined Lagrangian

$$\mathcal{L}_{WZ} = (\partial_{\mu}\varphi) (\partial^{\mu}\varphi)^{\dagger} + \frac{i}{2} \psi \sigma^{\mu} (\partial_{\mu}\bar{\psi}) - \frac{i}{2} (\partial_{\mu}\psi) \sigma^{\mu}\bar{\psi}$$
$$- |M|^{2} \varphi \varphi^{\dagger} - \frac{|y|^{2}}{4} \varphi \varphi \varphi^{\dagger} \varphi^{\dagger} - \left(\frac{M}{2} \psi \psi + \frac{M^{*}y}{2} \varphi \varphi \varphi^{\dagger} + \frac{y}{2} \varphi \psi \psi + \text{h.c.}\right)$$

$$\mathcal{L} = (\partial_{\mu}\varphi_{i})(\partial^{\mu}\varphi_{i})^{\dagger} + \frac{i}{2}\psi_{i}\sigma^{\mu}(\partial_{\mu}\bar{\psi}_{i}) - \frac{i}{2}(\partial_{\mu}\psi_{i})\sigma^{\mu}\bar{\psi}_{i}$$
$$- \sum_{i} \left|\frac{\partial W(\varphi_{i})}{\partial\varphi_{i}}\right|^{2} - \frac{1}{2}\left(\frac{\partial^{2}W(\varphi_{i})}{\partial\varphi_{i}\partial\varphi_{j}}\right)\psi_{i}\psi_{j} - \frac{1}{2}\left(\frac{\partial^{2}W^{\dagger}(\varphi_{i})}{\partial\varphi_{i}^{\dagger}\partial\varphi_{j}^{\dagger}}\right)\bar{\psi}_{i}\bar{\psi}_{j}$$

• Bosonic masses

$$V = (\phi^{*j} \phi_j) \mathbf{m}_{\mathrm{S}}^2 \begin{pmatrix} \phi_i \\ \phi^{*i} \end{pmatrix} \qquad m_S^2 = \begin{pmatrix} W_{jk}^* W^{ik} & W_{ijk}^* W^k \\ W^{ijk} W_k^* & W_{ik}^* W^{jk} \end{pmatrix}$$

Fermionic masses

$$m_F = W^{ji}$$

Bosonic masses

$$m_S^2 = \begin{pmatrix} |m|^2 & -(yF)^{\dagger} \\ -yF & |m|^2 \end{pmatrix}$$

• Fermionic masses

$$m_F = m$$

In the one field model: 5459

University of Durham

Bosonic masses

$$m_S^2 = \begin{pmatrix} |m|^2 & -(yF)^{\dagger} \\ -yF & |m|^2 \end{pmatrix}$$

• Fermionic masses

$$m_F = m$$

- $F=0 \rightarrow SUSY \rightarrow m_{fermion}=m_{scalar}$
- $F \neq 0 \rightarrow SUSY \rightarrow m_{fermion} \neq m_{scalar}$

SUSY breaking first attempts

- We have seen $F \neq 0 \rightarrow SUSY$ breaking
- F and V(ϕ) are connected

$$V(\varphi) = \left|\frac{\partial W(\varphi)}{\partial \varphi}\right|^2 = |F|^2$$

Vacuum needs

$$\frac{\partial V(\varphi)}{\partial \varphi_i^*} = 0 = W_{ij}^* W^i = -W_{ij}^* F_i^{\dagger}$$

If we can find solution for F[†]_i=Wⁱ=0 → SUSY vacuum!

If F_i=0 possible → No SUSY

• Example: one field model

$$W' = \frac{\partial W}{\partial \varphi} = a + m\varphi + \frac{1}{2}y\varphi^2 = 0$$

Always solution as long as m or y ≠ 0 → Has SUSY vacuum

• Example II: one field model m=y=0

$$W' = \frac{\partial W}{\partial \varphi} = a \neq 0$$

→ breaks SUSY ©.

But:
$$\mathcal{L} = a^2 = ext{field independent}$$

No masses, no interactions, only vacuum energy

SUSY is nice but must be broken

F≠0 or D≠0 do the trick
 → Boson and fermion masses can(!) differ

F=0 possible → no SUSY breaking
 → SUSY breaking is difficult to arrange!

SUSY breaking first attempts

- We have seen $F \neq 0 \rightarrow SUSY$ breaking
- F and V(ϕ) are connected

$$V(\varphi) = \left|\frac{\partial W(\varphi)}{\partial \varphi}\right|^2 = |F|^2$$

Vacuum needs

$$\frac{\partial V(\varphi)}{\partial \varphi_i^*} = 0 = W_{ij}^* W^i = -W_{ij}^* F_i^{\dagger}$$

If we can find solution for F[†]_i=Wⁱ=0 → SUSY vacuum!

If F_i=0 possible → No SUSY

• Example: one field model

$$W' = \frac{\partial W}{\partial \varphi} = a + m\varphi + \frac{1}{2}y\varphi^2 = 0$$

Always solution as long as m or y ≠ 0 → Has SUSY vacuum

• Example II: one field model m=y=0

$$W' = \frac{\partial W}{\partial \varphi} = a \neq 0$$

→ breaks SUSY ©.

But:
$$\mathcal{L} = a^2 = ext{field independent}$$

No masses, no interactions, only vacuum energy

On the way to better SUSY breaking

Sucessful SUSY breaking

O'Raifeartaigh model (OR model)

$$W_{\rm OR}(\phi_i) = -a\,\phi_1 + m\,\phi_2\phi_3 + \frac{y}{2}\phi_1\phi_3^2$$

$$W_1 = -a + \frac{y}{2}\phi_3^2$$

$$W_2 = m\phi_3$$

$$W_3 = m\phi_2 + y\phi_3$$

Successful SUSY breaking

O'Raifeartaigh model

$$W_{\rm OR}(\phi_i) = -a\,\phi_1 + m\,\phi_2\phi_3 + \frac{y}{2}\phi_1\phi_3^2$$

2

. .

Try to find SUSY vac: Solve W_i=0

$$\rightarrow$$

$$W_{1} = -a + \frac{y}{2}\phi_{3}^{2} \qquad W_{1} = -a \neq 0$$

$$W_{2} = m\phi_{3} \longrightarrow \phi_{3} = 0$$

$$W_{3} = m\phi_{2} + y\phi_{3}$$

Properties of OR model

Potential

$$V_{\rm OR} = \sum_{i} \left| \frac{\partial W_{\rm OR}(\varphi_i)}{\partial \varphi_i} \right|^2 = \left| a - \frac{y}{2} \varphi_3^2 \right|^2 + \left| m \varphi_3 \right|^2 + \left| m \varphi_2 + y \varphi_1 \varphi_3 \right|^2$$

For
$$a < \frac{m^2}{y}$$
 (check homework)
Absolute minimum at

$$\phi_2 = \phi_3 = 0, \qquad \phi_1 = ext{arbitrary}$$

Properties of OR model

Potential

$$V_{\rm OR} = \sum_{i} \left| \frac{\partial W_{\rm OR}(\varphi_i)}{\partial \varphi_i} \right|^2 = \left| a - \frac{y}{2} \varphi_3^2 \right|^2 + \left| m \varphi_3 \right|^2 + \left| m \varphi_2 + y \varphi_1 \varphi_3 \right|^2$$

For
$$a < \frac{m^2}{y}$$
 (check homework)
Absolute minimum at

$$\phi_2 = \phi_3 = 0, \qquad \phi_1 = ext{arbitrary}$$
(pseudo-)modulus

(Nearly) massless, A plague of many a SUSY model!

Fermion mass matrix

• One massless fermion, ψ_1 , and two with mass (comb. of ψ_2 , ψ_3). $m_{\pm} = \frac{1}{2}y\phi_2$

$$m_{\pm} = \frac{1}{2}y\phi_1 \pm \sqrt{m^2 + \frac{y^2\phi_1^2}{4}}$$

Fermion mass matrix

$$m_F = \left(egin{array}{cccc} 0 & 0 & 0 \ 0 & 0 & m \ 0 & m & 0 \end{array}
ight)$$

• One massless fermion, ψ_1 , and two with mass (comb. of ψ_2 , ψ_3). $m_{\pm} = \frac{1}{2}y\phi_1 \pm \sqrt{m^2 + \frac{y^2\phi_1^2}{4}}$

For later: $\phi_1=0$ - $|m_\pm|=m$

The Goldstino

The Goldstino

- We broke a global fermionic symmetry
 Expect massess fermion: goldstino!
- ψ_1 is the goldstino!
The Goldstino

- We broke a global fermionic symmetry
 Expect massess fermion: goldstino!
- ψ_1 is the goldstino!

Goldstino direction

$$\begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix} \sim \begin{pmatrix} -W_1^{\star} \\ -W_2^{\star} \\ -W_3^{\star} \end{pmatrix} = \begin{pmatrix} F_1 \\ F_2 \\ F_3 \end{pmatrix} = \begin{pmatrix} F_1 \neq 0 \\ 0 \\ 0 \end{pmatrix}$$

The Goldstino: general case (F-terms only)

- SUSY breaking
 Goldstino
- Goldstino direction

$$\tilde{G} = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \dots \end{pmatrix} = \begin{pmatrix} -W_1^{\star} \\ -W_2^{\star} \\ \dots \end{pmatrix} = \begin{pmatrix} F_1 \\ F_2 \\ \dots \end{pmatrix}$$

The Goldstino: general case (F-terms only)

- SUSY breaking
 Goldstino
- Goldstino direction

$$\tilde{G} = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \dots \end{pmatrix} = \begin{pmatrix} -W_1^{\star} \\ -W_2^{\star} \\ \dots \end{pmatrix} = \begin{pmatrix} F_1 \\ F_2 \\ \dots \end{pmatrix}$$

· Proof:

$$m_F^{ij}\tilde{G}_j = W^{ij}W_j^* = \frac{\partial}{\partial\phi_i}W^jW_j^* = \frac{\partial}{\partial\phi_i}V(\phi) = 0$$

Minimum of the potential

SUSY breaking is difficult

Back to OR model

The bosonic mass matrix

• At $\phi_1 = 0$

The bosonic mass matrix

• At $\phi_1 = 0$

- Eigenvalues 2*0,2*/m²
- |m|²+|y||a|, |m|²-|y||a|

The bosonic mass matrix

• At $\phi_1=0$

Eigenvalues 2*0,2*|m|²
|m|²+|y||a|, |m|²-|y||a|

match fermions

SUSY ~F≠0

No fermionic counterparts with these masses The Supertrace a challenge for (tree level) SUSY

The Supertrace

- Sum over bosonic and fermionic degrees of freedom,
- + for bosons, for fermions

$STr(M^2) = \sum (-1)^{2s} (2s+1)m_s^2 = 0$

Counts d.o.f.

The Supertrace in OR model

- Fermions: 2*(0, 2*|m|^2)
- Bosons: 2*0,2*|m|², |m|²+|y|²|a|², |m|²-|y|²|a|²

 $= 2 \times 0 + 2 \times |m|^2 + |m|^2 + |y||a| + |m|^2 - |y||a| - 2 \times 0 - 2 \times 2 \times |m|^2$

Supertrace: In general

$$m_F = W^{ij}$$

$$m_B^2 = \begin{pmatrix} W^{jk}W_{ik}^* & W_{ijk}^*W^k \\ W^{ijk}W_k^* & W_{jk}^*W^{ik} \end{pmatrix}$$
$$= \begin{pmatrix} m_F^{\dagger}m_F & W_{ijk}^*W^k \\ W^{ijk}W_k^* & m_Fm_F^{\dagger} \end{pmatrix}$$

Supertrace: In general

 $W^{jk}W^*_{ik}$ $W^{ijk}W^*_k$ $W^*_{ijk}W^k$ m_B^2 = $W_{jk}^* W^{ik}$

 $m_{F}^{\dagger}m_{F}$

 $W^{jjk}W_{l_{h}}^{*}$

Only bits relevant for trace Independent of 51559

 $W^*_{ijk}W^k$

 $m_F m_F^{\intercal}$

Supertrace: In general

$$m_F = W^{ij}$$

$$m_B^2 = \begin{pmatrix} W^{jk}W_{ik}^* & W_{ijk}^*W^k \\ W^{ijk}W_k^* & W_{jk}^*W^{ik} \end{pmatrix}$$
$$= \begin{pmatrix} m_F^{\dagger}m_F & W_{ijk}^*W^k \\ W^{ijk}W_k^* & m_F m_F^{\dagger} \end{pmatrix}$$

 $\mathbf{STr}M^2 = \mathrm{Tr}(m_F^{\dagger}m_F) + \mathrm{Tr}(m_F m_F^{\dagger}) - 2\mathrm{Tr}(m_F^{\dagger}m_F)$

 For conserved quantities particles can only mix if same "charges"

> Mass matrices block diagonal (with blocks of same "charge")

$$ightarrow {
m STr} M^2 = 0$$
 for each block!!!

The evil Supertrace II

$${
m STr}M^2=0$$
 for each "charge" multiplet

• Example:

- electric charge =-1/3
- Triplett under $SU(3)_c$

$$m_{\tilde{d}}^2 + m_{\tilde{s}}^2 + m_{\tilde{b}}^2 = 2(m_d^2 + m_s^2 + m_b^2)$$

$$= 2(5 \text{GeV})^2$$

This is RULED OUT!

How to avoid the evil supertrace?

• 4th (or more) generation $m_{b_4}^2 \gg (100 \, {\rm GeV})^2$

$$m_{\tilde{d}}^2 + m_{\tilde{s}}^2 + m_{\tilde{b}}^2 + m_{\tilde{b}_4}^2 = 2(m_d^2 + m_s^2 + m_b^2 + m_{b_4}^2)$$

$$\gg (100 \,\mathrm{GeV})^2$$

• Unnatural

• In trouble with LHC Higgs searches (see later)

How to avoid the evil supertrace?

• 4th (or more) generation

- · Loop level
 - Hidden Sector SUSY
 - Strongly coupled

How to avoid the evil supertrace?

• 4th (or more) generation

- · Loop level
 - Hidden Sector SUSY -> Tomorrow
 - Strongly coupled (ugly, difficult)

What is R-symmetry?

- Naively:
 - preserve SUSY
 - fermions and bosons of the same mutiplet transform in the same way under symmetry

What is R-symmetry?

- Naively:
 - preserve SUSY
 - fermions and bosons of the same mutiplet transform in the same way under symmetry
 - Not always True!!!!

R-Symmetry

R-symmetry and the superpotential

The Lagrangian needs to be invariant

$$\mathcal{L}_F = \int \mathrm{d}^2\theta \, W(\phi_i) + \int \mathrm{d}^2\bar{\theta} \, W^{\dagger}(\phi_i^{\dagger})$$

Transformation

$$W(\phi_i) \to \exp(2i\alpha), \qquad \theta \to \exp(i\alpha)$$

is a symmetry, R-symmetry $U(1)_R$

R-symmetry and the superpotential

The Lagrangian needs to be invariant

$$\mathcal{L}_F = \int \mathrm{d}^2\theta \, W(\phi_i) + \int \mathrm{d}^2\bar{\theta} \, W^{\dagger}(\phi_i^{\dagger})$$

Transformation

$$W(\phi_i) \to \exp(2i\alpha)W(\phi_i), \qquad d\theta \to \exp(-i\alpha)d\theta$$

 $\theta \to \exp(i\alpha)\theta$

is a symmetry, R-symmetry $U(1)_R$

 \rightarrow Charge of W=2 charge of θ =1

R-symmetry, fermions and bosons

• Superfield of charge X

$$\begin{split} \phi(x,\theta,\bar{\theta}) &= \varphi(x) + \sqrt{2}\theta\psi(x) - i\theta\sigma^{\mu}\bar{\theta}\,\partial_{\mu}\varphi(x) + \frac{i}{\sqrt{2}}(\theta\theta)(\partial_{\mu}\psi(x)\sigma^{\mu}\bar{\theta}) \\ &- \frac{1}{4}(\theta\theta)(\bar{\theta}\bar{\theta})\partial^{\mu}\partial_{\mu}\varphi(x) - (\theta\theta)F(x) \end{split}$$

Charge of boson =X
Charge of fermion =X-1

Back to OR model

OR model has an R-symmetry

The superpotential needs R-charge =2

$$W_{\rm OR}(\phi_i) = -a\,\phi_1 + m\,\phi_2\phi_3 + \frac{y}{2}\phi_1\phi_3^2$$

\rightarrow [ϕ_1]=2, [ϕ_2]=2, [ϕ_3]=0 does the trick

OR model has R-symmetry

OR model has an R-symmetry

The superpotential needs R-charge =2

$$W_{\rm OR}(\phi_i) = -a\,\phi_1 + m\,\phi_2\phi_3 + \frac{y}{2}\phi_1\phi_3^2$$

\rightarrow [ϕ_1]=2, [ϕ_2]=2, [ϕ_3]=0 does the trick

→ OR model has R-symmetry

Note: If we impose additional Z₂ symmetry S with Sφ₁=φ₁, Sφ₂=-φ₂, Sφ₃=-φ₃, SW=W → No other terms allowed in W → "Generic" superpotential

The Nelson-Seiberg Theorem

- Assume generic superpotential
- → If we want SUSY (via F-terms)
 - R-symmetry is necessary
 - spontaneously broken R is sufficient

- (1) Need a symmetry
- No symmetries

n equations $W_i = 0$ for n unknowns ϕ_i \rightarrow The eqs. are polynomial \rightarrow always solution \rightarrow SUSY unbroken

- (2) Need an R-symmetry
- Non-R symmetry (continuous, global) with I generators
 W is (holomorphic) function of (n-l) fields
- Example: U(1) symmetry ϕ_i , charge $q_i \rightarrow X_i = \phi_i / \phi_n^{q_i/q_n}$ Superpotential uncharged $\Rightarrow \phi_n$ drops out! $\Rightarrow (n-1) X_i$

- (2) Need an R-symmetry
- Non-R symmetry (continuous, global) with I generators
 W is (holomorphic) function of (n-l) fields
- (n-l) equations $W_i = 0$ for (n-l) unknowns ϕ_i \rightarrow The eqs. are polynomial \rightarrow always solution \rightarrow SUSY unbroken

Nelson-Seiberg: Proof

- (3) Spontaneously broken R-symmetry works
- U(1) R symmetry (continuous, global)

 ϕ_i , charge $q_i \rightarrow X_i = \phi_i / \phi_n^{qi/qn}$

- R is spontaneously broken \rightarrow at least one $\phi_n \neq 0$
- Superpotential has charge 2 $\rightarrow W = \phi_n^{2/qn} f(X_i)$
- For SUSY to be unbroken → (n-1) eq. df/dX_i and f=0 → n equations for (n-1) unkown X_i → no solution → SUSY

Trouble with R-symmetry Metastability I

The R-axion

- R-symmetry is an axial symmetry
- Why? Consider $W = h\phi_1\phi_2\Phi$ R(ϕ_1)=R(ϕ_2)=0, R(Φ)=2 $\mathcal{L} \supset h(\psi_1\Phi_B\psi_2 + h.c.) = h\overline{\psi}_R\Phi_B\psi_L + h.c.$

$$\psi_1=ar{\psi}_R, \quad \psi_2=\psi_L$$

R-charge for ψ_1 and ψ_2 =-1, Φ_B =2

$$\Rightarrow \bar{\psi}_R \to \bar{\psi}_R \exp(-i\alpha_R), \qquad \psi_L \to \exp(-i\alpha_R)\psi_L$$
The R-axion

- R-symmetry is an axial symmetry
- Why? Consider $W=h\phi_1\phi_2\Phi$
- $\mathcal{L} \supset h(\psi_1 \Phi_B \psi_2 + h.c.) = h \overline{\psi}_R \Phi_B \psi_L + h.c.$

$$\psi_1 = ar{\psi}_R, \quad \psi_2 = \psi_L$$

 $R(\psi_1)=R(\psi_2)=-1$, $R(\Phi_B)=0$, electric charge +1, -1, 0

$$\Rightarrow \bar{\psi}_R \to \bar{\psi}_R \exp(i\alpha_R), \qquad \psi_L \to \exp(i\alpha_R)\psi_L$$

$$\psi_R \to \psi_R \exp(i\alpha_{el}),$$

$$\psi_L \to \exp(-i\alpha_{el})\psi_L$$

The R-axion

 Due to the axial anomaly the Goldstone direction a_R of an axial symmetry receives coupling term to two photons

$$\sim \frac{\alpha}{2\pi f_R} \left(\sum_{R-charged} Q_{electric}^2 \right) a_R F^{\mu\nu} \tilde{F}_{\mu\nu}$$

Spontaneous R-breaking scale

The R-axion

 Due to the axial anomaly the Goldstone direction a_R of an axial symmetry receives coupling term to two photons

$$\sim \frac{\alpha}{2\pi f_R} \left(\sum_{R-charged} Q_R Q_{electric}^2 \right) a_R F^{\mu\nu} \tilde{F}_{\mu\nu}$$

Spontaneous R-breaking scale

Similar interaction for gluons!

Massless particle coupled to two photons/gluons

Strongly constrained

• For example two photon coupling...

More constraints from other couplings...

typically need (small) explicit R-breaking

→ SUSY vacuum will be metastable

typically need (small) explicit R-breaking

→ SUSY vacuum will be metastable

Alternative: No spontaneous R-breaking (does not work → tomorrow)

typically need (small) explicit R-breaking

→ SUSY vacuum will be metastable

Alternative: Gravity corrections (works → Bagger, Randall, Poppitz)

- O'Raifeartaigh model is a simple realization of SUSY
- STr(M²)=0 even after SUSY (at tree-level)
 Pheno problems
 Need Loop level SUSY effects
- R-symmetry
 - transforms bosons and fermions differently
 - Needed for F-term SUSY breaking (Nelson-Seiberg)
 - → R-axion or metastability

The MSSM in a nutshell

The MSSM the matter bit

• The matter fields

	$LH\chi SF$	spin 0	spin $\frac{1}{2}$	$(SU(3), SU(2), U_Y(1))$
squarks and quarks	Q	$(\tilde{u}_L, \tilde{d}_L)$	(u_L, d_L)	$(3, 2, \frac{1}{6})$
	U	\tilde{u}_R^\dagger	u_R^\dagger	$(\bar{3}, 1, -\frac{2}{3})$
	D	${ ilde d}^{\dagger}_R$	d_R^\dagger	$(\overline{3},1,\frac{1}{3})$
sleptons and leptons	L	$(\tilde{ u}, \tilde{e}_L)$	(u, e_L)	$(1, 2, -\frac{1}{2})$
	E	${ ilde e}_R^\dagger$	e_R^\dagger	(1,1,1)
higgs and higgsinos	H_u	$\left(h_{u}^{+},h_{u}^{0}\right)$	$(\tilde{h}_u^+,\tilde{h}_u^0)$	$(1, 2, \frac{1}{2})$
	H_d	(h^0_d,h^d)	$(\tilde{h}^0_d,\tilde{h}^d)$	$(1, 2, -\frac{1}{2})$

Two Higgs fields

Why two Higgs fields?

• We want masses for up and down quarks

$$W_{\text{MSSM}} = y_u U Q H_u - y_d D Q H_d$$

Y=-2/3 1/6 1/3 1/6
1/2 = -1/2

Why two Higgs fields?

• We want masses for up and down quarks

$$W_{\text{MSSM}} = y_u U Q H_u - y_d D Q H_d$$

Y=-2/3 1/6 1/3 1/6
1/2 \neq -1/2

(holomorphicity forbids H[†] in SUSY!)

Also anomaly cancellation!

→ Need two separate Higgs fields!

The superpotential

Having this we obtain the MSSM superpotential

$$W_{\text{MSSM}} = y_u U Q H_u - y_d D Q H_d - y_e E L H_d + \mu H_u H_d$$

so far no new parameters!!!

What we don't want...

The SM symmetries allow more terms

$$W_{\mathbb{R}} = \frac{1}{2}\lambda E L L + \lambda' D L Q + \mu' L H_u + \frac{1}{2}\lambda'' U D D$$

violate Lepton # violates Baryon

Evil proton decay

Forbid using R-parity

$R \equiv (-1)^{3B+L+2s}$

The MSSM the gauge bit

Gauge interactions

-1

D-term

Vector gauge superfield

Gauge field

$$V_{\rm WZ}(x,\theta,\bar{\theta}) = \theta \sigma^{\mu}\bar{\theta} v_{\mu}(x) + i(\theta\theta) \,\bar{\theta}\bar{\lambda}(x) - i(\bar{\theta}\bar{\theta}) \,\theta\lambda(x) + \frac{1}{2}(\theta\theta)(\bar{\theta}\bar{\theta}) \,D(x)$$

gauginos

• The super-derivative is a χ SF

$$W_{\alpha} = -\frac{1}{4} (\bar{D}\bar{D}) D_{\alpha} V$$

Gauge interactions

Vector gauge superfield

$$V_{\rm WZ}(x,\theta,\bar{\theta}) = \theta \sigma^{\mu} \bar{\theta} v_{\mu}(x) + i(\theta\theta) \,\bar{\theta} \bar{\lambda}(x) - i(\bar{\theta}\bar{\theta}) \,\theta\lambda(x) + \frac{1}{2}(\theta\theta)(\bar{\theta}\bar{\theta}) \,D(x)$$

Gauge field gauginos

D-term

-1

· The super-derivative is a χSF

$$W_{\alpha} = -\frac{1}{4} (\bar{D}\bar{D}) D_{\alpha} V$$

$$= -i\,\lambda_{\alpha}(y) - \theta\theta\,\sigma^{\nu}_{\alpha\dot{\beta}}\,\partial_{\nu}\bar{\lambda}^{\dot{\beta}}(y) - \frac{i}{2}\,\theta_{\beta}\,(\sigma^{\mu}\bar{\sigma}^{\nu})^{\ \beta}_{\alpha}F_{\mu\nu}(y) + \theta_{\alpha}\,D(y)$$

The SUSY gauge Lagrangian

• $W_{\alpha} \chi SF$

$$\mathcal{L} \supset \int d^2 \theta \left[-\frac{1}{4} W^{\alpha} W_{\alpha} \right] + h.c.$$

$$= -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} - \frac{i}{2}(\partial_{\mu}\lambda)\sigma^{\mu}\bar{\lambda} + \frac{i}{2}\lambda\sigma^{\mu}(\partial_{\mu}\bar{\lambda}) + \frac{1}{2}D^{2}$$

V vector SF

$$\mathcal{L} \supset \int d^2 \theta d^2 \bar{\theta} \left[\phi_i^\dagger \exp(2gV)_{ij} \phi_j \right]$$

 $= g \phi_i^{\dagger} T_{ij}^a \phi_j D^a + \text{terms without } D$

Integrate out D

D has no kinetic term → integrate out

D-term scalar potential contribution

$$V_D = \frac{1}{2} \sum_a (D^a)^2 = \frac{1}{2} \sum_a \left[\sum_{i,j} g \phi_i^{\dagger} T_{ij}^a \phi_j \right]^2$$

- So far no gaugino mass term no surprise: SUSY partner of massless gauge bosons
- We could do Higgs mechanism
- But: Photino needs mass, too.
 Need SUSY mass term

$$\sim \frac{1}{2}m\lambda\lambda$$

(Majorana) Gaugino masses break R-sym

• SUSY Majorana gaugino mass

$$\sim \frac{1}{2}m\lambda\lambda$$

• W_{α} has R-charge 1

$$\mathcal{L} \supset \int d^2 heta \left[-rac{1}{4} W^{lpha} W_{lpha}
ight] + h.c.$$

• $W_{\alpha} \sim \lambda + \dots \rightarrow \lambda$ has R-charge 1

Gaugino masses need R-symmetry breaking (to Z₂ or less)

see yesterday

"The Mess" soft SUSY terms in the MSSM

- So far no additional parameters
- But here they come: soft-SUSY terms

$$\mathcal{L}_{\text{soft}} = -\frac{1}{2} \Big(M_1 \,\widetilde{B}\widetilde{B} + M_2 \,\widetilde{W}\widetilde{W} + M_3 \,\widetilde{g}\widetilde{g} \Big) + \text{h.c.} \\ - m_{H_u}^2 \,h_u^\dagger \,h_u - m_{H_d}^2 \,h_d^\dagger \,h_d - (b \,h_u \,h_d + \text{h.c.}) \\ - \Big(a_u \widetilde{u}_R \,\widetilde{q} \,h_u - a_d \,\widetilde{d}_R \,\widetilde{q} \,h_d - a_e \,\widetilde{e}_R \,\widetilde{l} \,h_u \Big) + \text{h.c.} \\ - m_Q^2 \,\widetilde{q}^\dagger \,\widetilde{q} - m_L^2 \,\widetilde{l}^\dagger \,\widetilde{l} - m_u^2 \,\widetilde{u}_R^\dagger \,\widetilde{u}_R - m_d^2 \,\widetilde{d}_R^\dagger \,\widetilde{d}_R - m_e^2 \,\widetilde{e}_R^\dagger \,\widetilde{e}_R$$

3x3 matrices

What is soft?

• Without SUSY $v_{EW}^2 \sim m_{H,tree}^2 +$

 $\sim \Lambda_{\rm UV}^2 \sim M_P^2$

Unbroken SUSY

 $v_{EW}^2 \sim m_{H,tree}^2 +$

→ Quadratic divergence cancels!

What is soft?

• Without SUSY $v_{EW}^2 \sim m_{H,tree}^2 + \cdots$

$$\sim \Lambda_{
m UV}^2 \sim M_P^2$$

• Unbroken SUSY $v_{EW}^2 \sim m_{H,tree}^2 +$

• Soft SUSY $v_{EW}^2 \sim m_{H,tree}^2 +$

 $\sim -y^2 \left(\int d^4k rac{1}{k^2+m_F^2} - \int d^4k rac{1}{k^2+m_B^2}
ight) \sim m_B^2 - m_F^2 \sim m_{soft}^2$

→ Quadratic divergence still cancels

What is soft?

· Hard SUSY

$$v_{EW}^2 \sim m_{H,tree}^2 +$$

Breaking in dimensionless coupling Quadratic divergence is back

• In general one finds:

Terms with positive mass dimension break SUSY softly.

Explaining "The Mess"

Mediating SUSY to the MSSM

105 new parameters - connecting to a model

Plenty soft-SUSY terms

$$\mathcal{L}_{\text{soft}} = -\frac{1}{2} \Big(M_1 \, \widetilde{B} \widetilde{B} + M_2 \, \widetilde{W} \widetilde{W} + M_3 \, \widetilde{g} \widetilde{g} \Big) + \text{h.c.} \\ - m_{H_u}^2 h_u^{\dagger} h_u - m_{H_d}^2 h_d^{\dagger} h_d - (b \, h_u \, h_d + \text{h.c.}) \\ - \Big(a_u \widetilde{u}_R \, \widetilde{q} \, h_u - a_d \, \widetilde{d}_R \, \widetilde{q} \, h_d - a_e \, \widetilde{e}_R \, \widetilde{l} \, h_u \Big) + \text{h.c.} \\ - m_Q^2 \, \widetilde{q}^{\dagger} \, \widetilde{q} - m_L^2 \, \widetilde{l}^{\dagger} \, \widetilde{l} - m_u^2 \, \widetilde{u}_R^{\dagger} \, \widetilde{u}_R - m_d^2 \, \widetilde{d}_R^{\dagger} \, \widetilde{d}_R - m_e^2 \, \widetilde{e}_R^{\dagger} \, \widetilde{e}_R$$

- But writing them down in not an explanation
- Want to connect to a proper SUSY model

Remember from yesterday: Supertrace

$${
m STr}M^2=0$$
 for each "charge" multiplet

- Example:
 - electric charge =-1/3
 - Triplett under $SU(3)_c$

$$m_{\tilde{d}}^2 + m_{\tilde{s}}^2 + m_{\tilde{b}}^2 = 2(m_d^2 + m_s^2 + m_b^2)$$
$$= 2(5 \text{GeV})^2$$

This is RULED OUT!

Evading the Supertrace problem

$\mathrm{STr}M^2 = 0$ Tree-Level!!!

→ Generate soft-SUSY terms in the MSSM at loop-level

Evading the Supertrace problem

$$\mathrm{STr}M^2 = 0$$
 Tree-Level!!!

→ Generate soft-SUSY terms in the MSSM at loop-level and only at loop level

> Otherwise: larger tree-level bit fulfills STrM²=0 → Some m²<0 → vev → cotor

Evading the Supertrace problem

$$\mathrm{STr}M^2=0$$
 Tree-Level!!!

→ Generate soft-SUSY terms in the MSSM at loop-level and only at loop level

> Otherwise: larger tree-level bit fulfills STrM²=0 → Some m²<0 → vev → cotor

Assumes perturbative!

Hidden SUSY-breaking sector

SUSY SM sector (MSSM)

Soft SUSY breaking terms in MSSM

Why gauge mediation?

Hidden SUSY-breaking sector

SUSY SM sector (MSSM)

Soft SUSY breaking terms in MSSM

Gauge mediation

Hidden SUSY-breaking sector

SUSY SM sector (MSSM)

Coupled via SM gauge interactions

Gauge mediation

Hidden SUSY-breaking sector

SUSY SM sector (MSSM)

Coupled via SM gauge interactions

Carry gauge charges!

Gauge mediation

Realizing gauge mediation

Need SUSY model (hidden sector)

$$W(\Phi)_{\rm SUSYbreaking} = -F\Phi$$

- ·

Realizing gauge mediation

University of Durham

Need SUSY model (hidden sector)

$$W(\Phi)_{\rm SUSY\ breaking} = -F\Phi$$

Need messenger fields

 (gauged under SM group)
 → Use two SU(5) fields f, f

Complete SU(5) mutiplets do not spoil unification! (check as homework)

Realizing gauge mediation

University of Durham

Need SUSY model (hidden sector)

$$W(\Phi)_{\rm SUSY\,breaking} = -F\Phi$$

- Need messenger fields (gauged under SM group) \rightarrow Use two SU(5) fields \tilde{f}, f
- Couple messenger to hidden sector SUSY

 $W_{\text{couple}}(\Phi, \tilde{f}, f) = \lambda \Phi \tilde{f} f + M \tilde{f} f$

SUSY breaking...

Without coupling everything is great

$$\frac{\partial W_{\rm SUSY\,breaking}(\Phi)}{\partial \Phi} = -F \neq 0$$

• $R(\Phi)=2$ (has R-symmetry)

SUSY breaking... or not

Without coupling everything is great

$$\frac{\partial W_{\rm SUSY\,breaking}(\Phi)}{\partial \Phi} = -F \neq 0$$

- $R(\Phi)=2$ (has R-symmetry)
- But $W_{\text{couple}}(\Phi, \tilde{f}, f) = \lambda \Phi \tilde{f} f + M \tilde{f} f$ breaks R explicitly **Consider**

$$\frac{\partial W_{\text{total}}(\Phi, \tilde{f}, f)}{\partial \Phi} = -F + \lambda \tilde{f}f, \qquad \frac{\partial W_{\text{total}}(\Phi, \tilde{f}, f)}{\partial \tilde{f}} = (M - \lambda \Phi)f$$

Both vanish for

$$\Phi=rac{M}{\lambda},\qquad \widetilde{f}=f=\sqrt{rac{F}{\lambda}}$$

SUSY vacuum exists

→ This problem is very common

Indeed if we want m_{gaugino}~m_{sfermion} metastability is unavoidable (Komargodski + Shih)

But it might be interesting to consider m_{gaugino} < < m_{sfermion}!

→ Accept meta-stability for now.

 Gaugino masses arise now from one loop diagrams

 Gaugino masses arise now from one loop diagrams

Messenger bosons, f

Gauge couplings

 Gaugino masses arise now from one loop diagrams

SUSY breaking changes boson masses

 Gaugino masses arise now from one loop diagrams

$$\mathbf{h}_{\lambda,r} = \frac{k_r \alpha_r}{4\pi} \frac{\lambda F}{M} \left[1 + \frac{1}{6} \frac{(\lambda F)^2}{M^4} + \dots \right]$$

SUSY breaking

sfermion masses

Generating sfermion masses

sfermion masses arise now from two loop diagrams

Generating sfermion masses

sfermion masses arise now from two loop diagrams

Generating sfermion masses

sfermion masses arise now from two loop diagrams

Gaugino vs sfermion masses

- · One-loop vs two loop
- Mass vs mass squared

$$> m_{\lambda} \sim m_{\text{sfermion}} \sim \frac{\alpha}{4\pi} \frac{F}{M}$$

Gaugino and sfermion masses are of the same order (in this simple model!!)

University of Durham

gaugino masses are related by gauge couplings

$$\frac{m_{\lambda,1}}{m_{\lambda,3}} = \frac{\alpha_1}{\alpha_3}$$

Sfermion masses related by gauge coupling

$$\frac{m_{\tilde{e}_R}}{m_{\tilde{q}_R}} \sim \frac{\alpha_1}{\alpha_3}$$

Other soft terms?

All other soft terms

For example a-terms

$$a_u^{ij}H_uQ^i\bar{u}^j + a_d^{ij}H_dQ^i\bar{d}^j + a_L^{ij}H_dL^i\bar{E}^j$$

Predicted to be small (at scale M) (arise only at higher loop level!)

Predicted all soft-terms?

• That's the nice thing about gauge mediation!

Gravity mediation (in less than a nutshell)

Soft terms arise from non-renormalizable Planck suppressed terms

$$\begin{aligned} \mathcal{L}_{\mathrm{NR}} &= -\frac{1}{M_{\mathrm{P}}} F\left(\frac{1}{2} f_a \lambda^a \lambda^a + \frac{1}{6} y'^{ijk} \phi_i \phi_j \phi_k + \frac{1}{2} \mu'^{ij} \phi_i \phi_j\right) + \mathrm{c.c.} \\ &- \frac{1}{M_{\mathrm{P}}^2} F F^* k_j^i \phi_i \phi^{*j} \end{aligned}$$

Soft terms arise from non-renormalizable Planck suppressed terms

$$\begin{split} \mathcal{L}_{\mathrm{NR}} &= -\frac{1}{M_{\mathrm{P}}} F\left(\frac{1}{2} f_a \lambda^a \lambda^a + \frac{1}{6} y'^{ijk} \phi_i \phi_j \phi_k + \frac{1}{2} \mu'^{ij} \phi_i \phi_j\right) + \mathrm{c.c.} \\ &- \frac{1}{M_{\mathrm{P}}^2} F F^* \, k_j^i \phi_i \phi^{*j} \end{split}$$

Gaugino masses Sfermion masses

Soft terms arise from non-renormalizable Planck suppressed terms

$$\mathcal{L}_{\mathrm{NR}} = -\frac{1}{M_{\mathrm{P}}} F\left(\frac{1}{2} f_a \lambda^a \lambda^a + \frac{1}{6} y'^{ijk} \phi_i \phi_j \phi_k + \frac{1}{2} \mu'^{ij} \phi_i \phi_j\right) + \mathrm{c.c.}$$
$$-\frac{1}{M_{\mathrm{P}}^2} F F^* k_j^i \phi_i \phi^{*j}$$

A-terms

Soft terms arise from non-renormalizable Planck suppressed terms

$$\mathcal{L}_{\mathrm{NR}} = -\frac{1}{M_{\mathrm{P}}} F\left(\frac{1}{2} f_a \lambda^a \lambda^a + \frac{1}{6} y'^{ijk} \phi_i \phi_j \phi_k + \frac{1}{2} \mu'^{ij} \phi_i \phi_j\right) + \mathrm{c.c.}$$
$$-\frac{1}{M_{\mathrm{P}}^2} FF^* k_j^i \phi_i \phi^{*j}$$

Gauge symmetry forbids for all but Higgses (comment tomorrow)

Soft terms arise from non-renormalizable Planck suppressed terms

$$\mathcal{L}_{\mathrm{NR}} = -\frac{1}{M_{\mathrm{P}}} F\left(\frac{1}{2} f_a \lambda^a \lambda^a + \frac{1}{6} y'^{ijk} \phi_i \phi_j \phi_k + \frac{1}{2} \mu'^{ij} \phi_i \phi_j\right) + \mathrm{c.c.}$$
$$-\frac{1}{M_{\mathrm{P}}^2} FF^* k_j^i \phi_i \phi^{*j}$$

No reason to be diagonal in flavor space (gravity violated global symmetries)

New flavour changing processes
very EVIL!!!

Soft terms arise from non-renormalizable Planck suppressed terms

$$\mathcal{L}_{\rm NR} = -\frac{1}{M_{\rm P}} F\left(\frac{1}{2} f_a \lambda^a \lambda^a + \frac{1}{6} y'^{ijk} \phi_i \phi_j \phi_k + \frac{1}{2} \mu'^{ij} \phi_i \phi_j\right) + \text{c.c.}$$
$$-\frac{1}{M_{\rm P}^2} FF^* k_j^i \phi_i \phi^{*j}$$

Assume everything to be nicely diagonal → CMSSM, "minimal SuGra"

$$m_{1/2} = f \frac{\langle F \rangle}{M_{\rm P}}, \qquad m_0^2 = k \frac{|\langle F \rangle|^2}{M_{\rm P}^2}, \qquad A_0 = \alpha \frac{\langle F \rangle}{M_{\rm P}}, \qquad B_0 = \beta \frac{\langle F \rangle}{M_{\rm P}}$$

→ All soft-terms "predicted"

In gauge mediation

$$m_{\lambda} \sim m_{
m sfermion} \sim rac{lpha}{4\pi} rac{\lambda F}{M}$$
10-2-10-3

• Stability requires $\lambda F > M^2$

In gauge mediation

$$m_{\lambda} \sim m_{\rm sfermion} \sim \frac{\alpha}{4\pi} \frac{\lambda F}{M} \gtrsim {\rm few} \times 100 {\rm GeV}$$

 $10^{-2} - 10^{-3}$

• Stability requires
$$\lambda F > M^2$$

$$\frac{\lambda F}{M} \gtrsim 10^5 \text{GeV}, \qquad M \gtrsim 10^5 \text{GeV}$$

→ SUSY @ New High scale >> TeV

In gravity mediation

Even higher scale of SUSY

Summary III

- SUSY gauge interactions arise from Vector SF
- Gaugino masses need K + SUSY

- Soft-SUSY breaking in the MSSM
 SUSY terms with positive mass dimension
 add 105 new parameters!!!!
- $STrM^2=0 \rightarrow$ Hidden sector SUSY
- Need to mediate SUSY
 - Gauge mediation -> Calculate 105 parameters

• Gravity mediation...

RG evolution connecting to the TeV scale

Not at the TeV scale

•

All soft terms predicted at some high scale M

Fields in the loop have mass M

Not at the TeV scale

- All soft terms predicted at some high scale M
- Why?

Fields in the loop have mass M We have seen M> 10⁵ GeV yesterday even ~M_P in gravity mediation!!!

Need to do RG evolution

Loop corrections

mass m_{soft} < < M

$$\beta m_{\lambda,a} \equiv \frac{d}{dt} m_{\lambda,a} = \frac{1}{16\pi^2} g_a^2 \Big[2\sum_n I_a(n) - 6C_a(G) \Big] m_{\lambda,a}$$

massless

Loop corrections

$$\beta m_{\lambda,a} \equiv \frac{d}{dt} m_{\lambda,a} = \frac{1}{16\pi^2} g_a^2 \Big[2\sum_n I_a(n) - 6C_a(G) \Big] m_{\lambda,a}$$

Similar for all soft terms!

RG evolution is crucial

RG evolution breaks EW symmetry

(Up-type) Higgs mass turns negative → EW symmetry breaking!

One vev is not enough...

• $m_{Hu}^2 < 0 \rightarrow vev for h_u$

$W_{\rm MSSM} = y_u U Q H_u - y_d D Q H_d - y_e E L H_d + \mu H_u H_d$

mass

No mass for down type particles...

• B_{μ} gives vev to h_d

 $\overline{m_u^2}|H_u|^2 + \overline{m_d^2}|H_d|^2 + (B_\mu H_u H_d + c.c.)$

 $m^2_{H,real} = \left(egin{array}{cc} m^2_u & B_\mu \ B_\mu & m^2_d \end{array}
ight.$

h_u and h_d

→ Vev also for h_d

Tan(β) determines down-Yukawas

Down-type masses

 $\sim y_d v_d$ $\sim y_d v_u/tan(\beta)=fixed$

$$\rightarrow y_d \sim \tan(\beta)$$

Iarge tan(β) → large down Yukawas!

An example Pure GGM (sorry for the bias)

- Want to construct simple but theoretically well motivated setup to study phenomenology of gauge mediation
 - Few parameters
 - Capturing essential features of a large class of models
- Construct Gauge Mediation analog of CMSSM!

In general gauge mediation we have

$$M_{\tilde{\lambda}_i}(M_{mess}) = k_i \frac{\alpha_i(M_{mess})}{4\pi} \Lambda_{G,i}$$

$$m_{\tilde{f}}^2(M_{mess}) = 2 \sum_{i=1}^{3} C_i k_i \frac{\alpha_i^2(M_{mess})}{(4\pi)^2} \Lambda_{S,\pi}^2$$

In general gauge mediation we have

$$M_{\tilde{\lambda}_i}(M_{mess}) = k_i \frac{\alpha_i(M_{mess})}{4\pi} \Lambda_G$$
$$m_{\tilde{f}}^2(M_{mess}) = 2\sum_{i=1}^3 C_i k_i \frac{\alpha_i^2(M_{mess})}{(4\pi)^2} \Lambda_S^2$$

Assume unification and unsplit multiplets

In general gauge mediation we have

$$M_{\tilde{\lambda}_i}(M_{mess}) = k_i \frac{\alpha_i(M_{mess})}{4\pi} \Lambda_G$$
$$m_{\tilde{f}}^2(M_{mess}) = 2\sum_{i=1}^3 C_i k_i \frac{\alpha_i^2(M_{mess})}{(4\pi)^2} \Lambda_S^2$$

But keep $\Lambda_G \neq \Lambda_S$ as predicted in many explicit models

→ We have a simple setup with three parameters, Λ_{G} , Λ_{S} , M_{mess}

$$M_{\tilde{\lambda}_i}(M_{mess}) = k_i \frac{\alpha_i(M_{mess})}{4\pi} \Lambda_G$$
$$m_{\tilde{f}}^2(M_{mess}) = 2\sum_{i=1}^3 C_i k_i \frac{\alpha_i^2(M_{mess})}{(4\pi)^2} \Lambda_S^2$$

Soft terms include:

$$a_u^{ij}h_uQ^i\bar{u}^j + a_d^{ij}h_dQ^i\bar{d}^j + a_L^{ij}h_dL^i\bar{E}^j$$

Are predicted in GGM to be small at M_{mess}

The (soft)Higgs sector and B_{μ}

The (soft)Higgs sector and B_{μ}

$$m_u^2 |h_u|^2 + m_d^2 |h_d|^2 + (B_\mu h_u h_d + c.c.)$$
,

$$= m_L^2 + \mu^2 \qquad = 0 \quad \text{@M}_{\text{mess}}$$

Need Higgs vev, i.e. $m_u^2 < 0$

 B_{μ} needed to give vev to H_{d} (and masses to down-type particles)???

The (soft)Higgs sector and B_{μ}

$$m_u^2 |h_u|^2 + m_d^2 |h_d|^2 + (B_\mu h_u h_d + c.c.)$$
,

< 0 $\neq 0$ $@M_{EW}$

$B_{\mu} \neq 0$ generated by RG evolution to M_{EW}

 B_{μ} typically remains small \rightarrow Large tan β

What about μ ?

• SUSY Higgs term:

$$\mathcal{L}_{eff} \supset \int d^2\theta \ \mu \ H_u H_d$$

 Not necessarily connected to SUSY breaking
 Determine from EW symmetry breaking
 Accept finetuning

Importance of The (N)LSP

The LSP determines pheno

If R-parity is exact

- The lightest super-particle (LSP) is stable
- Everything decays eventually to LSP!

In gauge mediation: goldstino=gravitino is LSP

Gravity gives mass to

(more precisely the goldstino is "eaten" by the gravitino and becomes the longitudinal component of the gravitino)

The Next-to-LSP determines pheno

Gravitino=goldstino has suppressed interactions

$$\mathcal{L} = \frac{1}{F_0} \left((m_f^2 - m_{\tilde{f}}^2) \bar{f}_L \tilde{f} + \frac{M_{\tilde{\lambda}_i}}{4\sqrt{2}} \bar{\lambda}_i \sigma^{\mu\nu} F_{\mu\nu}^i \right) \tilde{G} + h.c.$$

- SUSY F-term (scale of symm. Breaking)
- \rightarrow higher F \rightarrow weaker gravitino interactions
- NLSP->gravitino(=LSP)+X decay slow
- → NLSP has longish livetime
- → All decays pass through NLSP to LSP

The pure GGM parameter space

M_{mess}=10¹⁰ GeV

M_{mess}=10¹⁴ GeV

Large(ish) $tan\beta$

M_{mess}=10¹⁴ GeV

NLSP

neutral combination of bino, zino, higgsino

Typical spectrum

Typical spectrum

LHC First Data

What kind of SUSY signal

- At LHC strongly interacting stuff has by far highest cross sections (proton collider)
- → Look for strongly interacting sparticles!!!
What kind of Signal?

Gluino decay modes

A word about the NLSP

Pure GGM requires high messenger scale
 (to generate sufficient tanβ)

CMS + ATLAS

Have searched for jets + missing energy

CMS + ATLAS

Have searched for jets + missing energy

Focus on ATLAS search with 35pb⁻¹

• Interpret the ATLAS results for jets plus missing energy in terms of pure GGM

 σ

Maximal cross section after cuts are applied

		Α	В	С	D
Pre-selection	Number of required jets	≥ 2	≥2	≥ 3	≥ 3
	Leading jet p_T [GeV]	> 120	> 120	> 120	> 120
	Other jet(s) p_T [GeV]	> 40	> 40	> 40	> 40
	$E_{\rm T}^{\rm miss}$ [GeV]	> 100	> 100	> 100	> 100
tion	$\Delta \phi$ (jet, $\vec{P}_{\rm T}^{\rm miss}$) _{min}	> 0.4	> 0.4	> 0.4	> 0.4
Final selec	$E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}$	> 0.3	-	> 0.25	> 0.25
	$m_{\rm eff}$ [GeV]	> 500	-	> 500	> 1000
	m_{T2} [GeV]	_	> 300	-	_
			0.05	7 न न	
(atter	$cuts) \leq$	1.3	0.35	1.1	. U.11
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
esigned for (		qq	qq	gg	/ qg
	boovy				
			пеач	У	

## What are cuts good for?





**Count only events** In this region Mostly signal Not background!!!

## From models to LHC





(with kinematics) cuts

#### ATLAS constraints on pure GGM





M_{mess} =10¹⁴ GeV

## Everything combined...





Big chunk of new parameter space excluded! LHC probes new untested region!

## Everything combined...





# Remember only 35 pb⁻¹ By now >4000 pb⁻¹ collected!

Big chunk of new parameter space excluded! LHC probes new untested region!



## ...in the squark-gluino mass plane



M_{mess} =10¹⁰ GeV



#### ...in the squark-gluino mass plane



Bigger mass reach for simplified model: neutralino mass=0, no branching ratios → " a bit too simple'

energy



## ...in the squark-gluino mass plane



M_{mess} =10¹⁰ GeV



#### ...in the squark-gluino mass plane



#### For Comparison: Another look at the CMSSM





#### For Comparison: Another look at the CMSSM





## Compare with pure GGM





## New data...





## General features





All models "live" in wedge shaped region

This is an RG effect: Gaugino masses Contribute to running Scalar masses

Note different opening angles arising from lower M_{mess} in GGM!

## Learn something about underlying physics



#### RG running:

#### Gauginos give positive contribution to sfermion mass



## Looking for gauge mediation

## Stau a signal for gauge mediation

- In gauge mediation stau is often NLSP and long-lived
- Stau is charged → leaves track → ☺

• (In gravity med. stau typically short lived)

## Stau a signal of gauge mediation

- s-tau can be long lived (superpartner of the  $\tau$ -lepton)
- The stau is charged!!!
   Search for long lived charged particles





 ← HSCP makes it through CMS (looks like a muon)

But v<c → measure time of flight

GeV m_{stau}>221

## Neutralino decay



## Can have long-lived neutralino decaying

$$\chi_1^0 \to \tilde{G} + \gamma$$

Lifetime ~ns, decay length ~meter
 displaced vertices





- In the MSSM
  - quartic Higgs couplings from D-terms determined by electroweak gauge couplings

$$ightarrow \lambda \sim g^2$$

$$\rightarrow m_h \sim \sqrt{\lambda} v = g v \sim m_Z$$

## Indeed one finds for the lightest Higgs:

 $m_{h_0} < m_Z \cos(2\beta)$ 



 $m_{h_0} < m_Z \cos(2\beta)$ 

• RULED OUT!!!



 $m_{h_0} < m_Z \cos(2\beta)$ 



$$m_{h_0} < m_Z \cos(2\beta)$$
 @ tree-level

#### + Loop contributions from stop-loop

$$\Delta(m_{h^0}^2) = \frac{3}{4\pi^2} \cos^2 \alpha \ y_t^2 m_t^2 \ln\left(m_{\tilde{t}_1} m_{\tilde{t}_2}/m_t^2\right)$$

(nearly) max scenario





![](_page_247_Picture_1.jpeg)

![](_page_247_Figure_2.jpeg)

## Gauge mediation models

University of Durham

- To explain 125 GeV Higgs
- $\cdot$  Often need  $\rm m_{stop} \gtrsim 10~TeV$

## Consider m_{gluino} < < m_{stop} ~ m_{squark}

Can still observe gluino

Predicted in models with less metastability

![](_page_249_Picture_0.jpeg)

#### Summary IV

![](_page_250_Picture_1.jpeg)

- In hidden sector, i.e. high scale SUSY models
  - RG evolution to EW scale is important!
  - Certain regions in parameter space not allowed
- First SUSY searches 
   → Jets + missing Energy
- (N)LSP important for phenomenology
- Gauge mediation smoking guns...
  - Long lived staus
  - Displaced vertices from NLSP decay
- Higgs mass tells us a lot about SUSY scale

# Concluding remarks
## should have colled lecture

## "SUSY is hard... ...but doable" ;-)



- SUSY not simple many theory constraints
- SUSY not simple 🗲 many pheno constraints
- Hidden sector SUSY seems an OK option
   Attempt to predict 105 soft parameters
  - Gauge (and gravity mediation) can do it
- Higgs can tell us a lot!
  Thing to watch in near future

## What I wanted to tell you...



... but didn't have time to do



- Witten index theorem
- Dynamical SUSY breaking
- Loop corrections to SUSY potentials (Coleman-Weinberg potential)
- More metastability

....



## Some literature

**Basics**:

- Stephen Martin, hep-ph/9709356
   "A supersymmetry primer"
- Adrian Signer, 0905.4630 [hep-ph]
   "ABC of SUSY"
- Gauge mediation:
- Giudice, Rattazzi, hep-ph/9801271
   "Theories with gauge-mediated supersymmetry breaking"