Cosmic microwave background and large-scale structure

Yvonne Y. Y. Wong RWTH Aachen

IMPRS Block course, MPP, March 5 – 8, 2012

CMB and LSS...

> 0.5 deg: COBE, WMAP, Planck

< 0.5 deg: DASI, CBI, ACBAR, Boomerang, VSA, QuaD, QUIET, BICEP, ACT, SPT, etc.

Galaxy clustering Cluster abundance

Gravitational lensing

Intergalactic hydrogen clumps; Lyman-α

CMB and LSS 2-point spectra (power spectra)...

3-point spectrum (bispectrum), 4-point spectrum (trispectrum)...

The concordance flat ACDM model...

• The simplest model consistent with present observations.

Plus flat spatial geometry+initial conditions from single-field inflation

Energy content

Flat geometry

\sum_{i}	$\Omega_i =$	1
\sum_{i}	$\Omega_i =$	l

Class	Parameter	$WMAP$ 7-year ML^{b}	$WMAP+BAO+H_0$ ML	WMAP 7-year Mean ^c	$WMAP+BAO+H_0$ Mean
Primary	$100\Omega_b h^2$	2.227	2.253	$2.249\substack{+0.056\\-0.057}$	2.255 ± 0.054
	$\Omega_c h^2$	0.1116	0.1122	0.1120 ± 0.0056	0.1126 ± 0.0036
	Ω_{Λ}	0.729	0.728	$0.727^{+0.030}_{-0.029}$	0.725 ± 0.016
	n_s	0.966	0.967	0.967 ± 0.014	0.968 ± 0.012
	au	0.085	0.085	0.088 ± 0.015	0.088 ± 0.014
	$\Delta^2_{\mathcal{R}}(k_0)^{\mathrm{d}}$	$2.42 imes 10^{-9}$	$2.42 imes 10^{-9}$	$(2.43 \pm 0.11) imes 10^{-9}$	$(2.430 \pm 0.091) imes 10^{-9}$
Derived	σ_8	0.809	0.810	$0.811^{+0.030}_{-0.031}$	0.816 ± 0.024
	H_0	70.3 km/s/Mpc	70.4 km/s/Mpc	$70.4 \pm 2.5 \text{ km/s/Mpc}$	$70.2\pm1.4~\mathrm{km/s/Mpc}$
	Ω_b	0.0451	0.0455	0.0455 ± 0.0028	0.0458 ± 0.0016
	Ω_c	0.226	0.226	0.228 ± 0.027	0.229 ± 0.015
	$\Omega_m h^2$	0.1338	0.1347	$0.1345^{+0.0056}_{-0.0055}$	0.1352 ± 0.0036
	$z_{ m reion}{}^{ m e}$	10.4	10.3	10.6 ± 1.2	10.6 ± 1.2
	$t_0{}^{\mathrm{f}}$	13.79 Gyr	13.76 Gyr	$13.77\pm0.13~\mathrm{Gyr}$	$13.76\pm0.11~\mathrm{Gyr}$

Summary of the cosmological parameters of ΛCDM model^a

Initial conditions

Komatsu et al. (WMAP7), 2010

From theory to phenomenological observables...

From predictions+data to cosmological parameters...

Theoretical predictions

- 1. Review: Homogeneous and isotropic universe
- 2. Inhomogeneities I: cosmological perturbation theory
- 3. Inhomogeneities II: Boltzmann equation
- 4. Initial conditions
- 5. Approximate solutions I: matter density perturbations
- 6. Approximate solutions II: CMB temperature fluctuations
- 7. Cosmological parameters from CMB temperature anisotropies

Useful references...

- Textbooks
 - S. Dodelson, *Modern cosmology*
 - R. Durrer, *The cosmic microwave background*
- Lecture notes
 - U. Seljak, *Lectures on dark matter* (Google it!)
- Research papers
 - C.-P. Ma and E. Bertschinger, Cosmological perturbation theory in the synchronous and conformal Newtonian gauges, Astrophys.J. 455 (1995) 7-25 [astro-ph/9506072]

Warning...

- There are many different conventions around!
- My S,V,T decomposition convention here is a tad different (for simplicity and consistency).
- When in doubt, rederive the equations yourself!

1. Review: Homogeneous and isotropic universe...

1.1 Friedmann-Lemaître-Robertson-Walker universe...

- Modern cosmology is based on the hypothesis that our universe is homogeneous and isotropic on sufficiently large length scales.
 - Homogeneous \rightarrow same everywhere
 - Isotropic \rightarrow same in all directions
 - Sufficiently large scales \rightarrow > O(100 Mpc)

- I pc = 1 parsec = 3.0856×10^{18} cm
 - Distance from Sun to Galactic centre ~ 10 kpc
 - Distance to the Virgo cluster ~ 20 Mpc
 - Size of the visible universe ~ O(10 Gpc)

1.1 Friedmann-Lemaître-Robertson-Walker universe...

- Homogeneity and isotropy imply maximally symmetric 3-spaces (3 translational and 3 rotational symmetries).
 - A spacetime metric that satisfies these requirements:

$$ds^{2} = \overline{g}_{\mu\nu} dx^{\mu} dx^{\nu} = a^{2}(\eta) \left[-d \eta^{2} + \gamma_{ij} dx^{i} dx^{j} \right]$$

FLRW metric
$$\gamma_{ij} dx^{i} dx^{j} = \frac{dr^{2}}{1 - Kr^{2}} + r^{2} \left(d \theta^{2} + \sin^{2} \theta d \phi^{2} \right)$$

- $a(\eta)$ = scale factor; η = conformal time
- $K = 0,+1, -1 \rightarrow$ flat, positively and negatively curved spatial geometry

1.2 Matter/energy content...

- Matter/energy content is encoded in the stress-energy tensor $\overline{T}_{\mu\nu}$.
- Homogeneity and isotropy imply only **one viable form**:

$$\bar{T}^{\mu\nu}_{(\alpha)} = \begin{pmatrix} -\bar{\rho}_{\alpha}(\eta) \bar{g}^{00} & 0 \\ 0 & \bar{P}_{\alpha}(\eta) \bar{g}^{ij} \end{pmatrix}$$

- Fluids at rest with respect to the FLRW coordinates (or comoving frame)
- $\overline{\rho}_{\alpha}$ = energy density of fluid i in the comoving frame
- \overline{P}_{α} = pressure of fluid i in the comoving frame

1.2 Matter/energy content: conservation...

- Local conservation of energy-momentum: $\nabla_{\mu}T^{\mu\nu}_{(\alpha)}=0$
- In a FLRW universe:

$$\frac{d\,\bar{\rho}_{\alpha}}{d\,\eta} + 3\frac{\dot{a}}{a}(\bar{\rho}_{\alpha} + \bar{P}_{\alpha}) = 0 \qquad \text{Continuity equation}$$

• A general fluid can be specified by an equation of state parameter:

$$w_{\alpha}(\eta) \equiv \overline{P}_{\alpha}(\eta) / \overline{\rho}_{\alpha}(\eta)$$

- Nonrelativistic matter ($w_m \sim 0$): $\overline{\rho}_m \propto a^{-3}$
- **Radiation** ($w_r = 1/3$):
- Vacuum energy ($w_{\Lambda} = -1$):

$$\overline{\rho}_m \propto a$$

 $\overline{\rho}_r \propto a^{-4}$
 $\overline{\rho}_{\Lambda} \propto \text{constan}$

1.3 Friedmann equation...

- Derived from the Einstein equation: $R_{\mu\nu} \frac{1}{2}g_{\mu\nu}R = 8\pi G T_{\mu\nu}$
- An evolution equation for the scale factor $a(\eta)$:

$$\mathscr{H}^{2}(\eta) = (aH)^{2} \equiv \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G a^{2}}{3} \sum_{\alpha} \bar{\rho}_{\alpha} - K$$
 Friedmann equation

- H = Hubble parameter
- (*SF* = conformal/comoving Hubble parameter)
- Friedmann+continuity equations → specify the whole system.

1.3 Friedmann equation...

• You may also have seen the Friedmann equation in this form:

$$\mathscr{W}^{2}(\eta) = a^{2} H^{2}(\eta_{0}) \Big[\Omega_{m} a^{-3} + \Omega_{r} a^{-4} + \Omega_{\Lambda} + \Omega_{K} a^{-2}\Big]$$
$$\Omega_{\alpha} = \frac{\overline{\rho}_{\alpha}(\eta_{0})}{\rho_{\text{crit}}(\eta_{0})}, \quad \rho_{\text{crit}}(\eta) \equiv \frac{3 \mathscr{W}^{2}(\eta)}{8 \pi G a^{2}}, \quad \Omega_{K} \equiv -\frac{K}{\mathscr{W}^{2}(\eta_{0})}$$
Critical density

Current observations:

$$\begin{split} \Omega_{m} \sim 0.3, & \Omega_{\Lambda} \sim 0.7, & \Omega_{r} \sim 10^{-5} \\ |\Omega_{K}| < 0.01 & \text{e.g., Komatsu et al. [WMAP7] 1001.4538} \\ H_{0} \equiv H(\eta_{0}) \sim 70 & \text{km s}^{-1} \text{Mpc}^{-1} \end{split}$$

1.3 Friedmann equation: solutions...

- Solutions in some limits:
 - Radiation domination:
 - Matter domination:

- Vacuum energy domination: $a \propto 1/\eta$

 $a \propto \eta$, $\mathscr{H} = 1/\eta$ $a \propto \eta^2$, $\mathscr{H} = 2/\eta$ $a \propto 1/\eta$

1.4 Redshift...

• From the geodesic equation:

• Cosmological redshift:

• In a FRLW universe, there is a one-to-one correspondence between η , a, and $z \rightarrow$ We use them interchangeably as a measure of time.

1.4 Distances: comoving distance...

• The comoving distance is the coordinate distance travelled by a light ray between emission and observation:

$$\chi(a_e) = \eta_0 - \eta_e = \int_{\eta_e}^{\eta_0} d\eta = \int_{a_e}^{a_0} \frac{da}{a \mathscr{W}(a)}$$

1.4 Distances: comoving distance...

• The comoving distance is the coordinate distance travelled by a light ray between emission and observation:

$$\chi(a_e) = \eta_0 - \eta_e = \int_{\eta_e}^{\eta_0} d\eta = \int_{a_e}^{a_0} \frac{da}{a \mathscr{W}(a)}$$

• Observable: angular diameter distance: Theory $d_A(a(z)) \equiv a \begin{pmatrix} \sinh \chi(a) \\ \chi(a) \\ \sin \chi(a) \end{pmatrix} \overset{\text{K=-1}}{\underset{\text{K=0}}{\text{K=+1}}} \overset{\text{Physical}}{\underset{\text{Size}}{\text{Standard}}} \overset{\text{Standard}}{\underset{\text{Size}}{\text{Standard}}} \overset{\text{Standard}}{\underset{\text{Size}}{\text{Standard}}}} \overset{\text{Standard}}{\underset{\text{Size}}{\text{Standard}}} \overset{\text{Standard}}{\underset{\text{Size}}{\text{Standard}}}} \overset{\text{Standard}}{\underset{\text{Size}}{\text{Standard}}}} \overset{\text{Standard}}{\underset{\text{Size}}{\text{Standard}}}} \overset{\text{Standard}}{\underset{\text{Size}}{\text{Standard}}} \overset{\text{Standard}}{\underset{\text{Size}}{\text{Standard}}}} \overset{\text{Standard}}{\underset{\text{Size}}{\text{Standard}}} \overset{\text{Standard}}{\underset{\text{Size}}{\text{Standard}}}} \overset{\text{Standard}}{\underset{\text{Size}}{\text{Standard}}} \overset{\text{Standard}}{\underset{\text{Size}}{\text{Standard}}} \overset{\text{Standard}}{\underset{\text{Size}}{\text{Standard}}}} \overset{\text{Standard}}{\underset{\text{Size}}{\underset{\text{Size}}{\text{Standard}}}} \overset{\text{Standard}}{\underset{\text{Size}}{\underset{\text{Size}}{\text{Standard}}}} \overset{\text{Standard}}{\underset{\text{Size$

D

1.4 Distances: comoving distance...

• The comoving distance is the coordinate distance travelled by a light ray between emission and observation:

$$\chi(a_e) = \eta_0 - \eta_e = \int_{\eta_e}^{\eta_0} d\eta = \int_{a_e}^{a_0} \frac{da}{a \mathscr{W}(a)}$$

Observable: luminosity distance:

Theory

$$d_{L}(a(z)) \equiv \frac{1}{a} \begin{pmatrix} \sinh \chi(a) \\ \chi(a) \\ \sin \chi(a) \end{pmatrix}$$

$$Luminosity$$

$$F = \frac{L}{4 \pi d_{L}^{2}}$$
Flux

Standard candle

1.4 Distances: Hubble length/horizon...

• The (comoving) Hubble length denotes the time-scale over which the scale factor changes appreciably:

```
comoving Hubble length \equiv c \mathcal{H}^{-1}
```

- **Significance**: "genuine" general relativistic effects are important on scales close to or larger than the Hubble length.
- Sometimes also called the Hubble horizon, but it is not a real horizon.
- Today, the Hubble length corresponds roughly to the size of the observable universe.

1.5 Particles in cosmology...

- The early universe is very dense and hot.
 - \rightarrow Frequent particle interactions.
- At sufficiently high temperatures, even weak interactions (or weaker) can be maintained in a state of equilibrium.

1.5 Particles in cosmology: Neutrino decoupling

 At temperatures > O(1) MeV, weak interactions keep neutrinos coupled to other particles in the thermal bath:

$$v + e \leftrightarrow v + e$$
, $v \overline{v} \leftrightarrow e^+ e^-$

- Weak interaction rate: $\Gamma = \sigma_{ve} n_e \sim G_F^2 T^5$

- Hubble expansion rate:
$$H = \sqrt{\frac{8\pi G}{3} \sum_{i} \overline{\rho}_{i}} \sim \frac{T^{2}}{m_{\text{pl}}}$$

 When the weak rate drops below the Hubble expansion rate, the neutrinos lose thermal contact with other particles → neutrinos decouple.

$$T_{\rm v\,dec} \sim 1 \,\,{
m MeV}$$
 Neutrino decoupling temperature

1.5 Particles in cosmology: Neutrino decoupling

• After neutrino decoupling, electrons & positrons annihilate at T ~ 0.2 MeV:

$$e^+e^- \rightarrow \gamma \gamma$$

- Annihilation reheats the photons, but **not** the neutrinos.

 \rightarrow The neutrinos emerge a little **colder** than the photons.

- Neutrino temperature after electron-positron annihilation:

$$T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}$$

1.5 Particles in cosmology: Photon decoupling...

 At temperatures > O(1) eV, Thomson scattering keeps photons and free (unbound) electrons in equilibrium:

$$e^{-} + \gamma \leftrightarrow e^{-} + \gamma$$
 Free electron density
• Thomson scattering rate: $\Gamma_T \sim n_e^{-} \sigma_T$ $\sigma_T = 0.665 \times 10^{-24} \text{ cm}^2$

• But the free electron density is governed predominantly by

$$e^{-} + p^{+} \leftrightarrow H + \gamma$$
 Hydrogen recombination

• When n_e drops to a point so that Γ_T < Hubble rate, photons decouple from electrons:

$$T_{\gamma\,
m dec}\!\sim\!0.25\,\,
m eV$$
 Photon decoupling temperature

2. Inhomogeneities I: cosmological perturbation theory...

2.1 Overview...

• Our current understanding of the inhomogeneous universe:

Neutrino decoupling

Matter-radiation equality

Photon decoupling

Inflation: Quantum fluctuations on a scalar field

- \rightarrow initial perturbations on spacetime metric
- → initial conditions for CMB & LSS

Fluid dynamics + GR

Gravity competes with pressure to amplify primordial inhomogeneities

CMB anisotropies: Perturbations in photon energy density and polarisation

LSS formation:

Perturbations in nonrelativistic matter

time

2.1 Overview...

• We study inhomogeneities by perturbing around the FLRW spacetime geometry and stress-energy tensor:

$$\begin{array}{ll} \overline{g}_{\mu\nu} = \text{Unperturbed} & g_{\mu\nu} = \overline{g}_{\mu\nu} + a^2 h_{\mu\nu}, & \left| h_{\mu\nu} \right| \ll 1 \\ \\ \overline{T}_{\mu\nu} = \text{Homogeneous} & T_{\mu\nu} = \overline{T}_{\mu\nu} + \delta T_{\mu\nu}, & \left| \delta T_{\mu\nu} \right| \ll \overline{\rho} \end{array}$$

- Our goal:
 - To derive relations between $h_{\mu\nu}$ and $\delta T_{\mu\nu} \rightarrow \text{Einstein equation}$.
 - To find evolution equations for $\delta T_{\mu\nu} \rightarrow \text{Boltzmann equation}$.
- We assume a flat background spatial geometry (K = 0):

$$ds^{2} = \overline{g}_{\mu\nu} dx^{\mu} dx^{\nu} = a^{2}(\eta) \left[-d \eta^{2} + \delta_{ij} dx^{i} dx^{j} \right]$$

2.2 Metric perturbations...

• The metric perturbations can be parameterised as

$$\begin{array}{l} \overline{g}_{\mu\nu} = \text{Unperturbed} \\ \text{FLRW metric} \\ g_{\mu\nu} = \overline{g}_{\mu\nu} + a^2 h_{\mu\nu}, \quad \left| h_{\mu\nu} \right| \ll 1 \\ \\ h_{\mu\nu} dx^{\mu} dx^{\nu} = -2 A d \eta^2 - 2 B_i d \eta d x^i + 2 H_{ij} dx^i dx^j \\ \\ - A \rightarrow 1 \text{ d.o.f.} \\ - B_i \rightarrow 3 \text{ d.o.f.} \\ - H_{ij} \rightarrow \text{Symmetric in } i \text{ and } j; 6 \text{ d.o.f.} \end{array} \right\} \quad 10 \text{ d.o.f.}$$

2.2 Metric perturbations: decomposition...

• Because the FLRW background has 3 rotational symmetries, we can decompose the perturbations A, B_i and H_{ij} into irreducible scalar, vector and tensor representations under rotation.

2.2 Metric perturbations: decomposition...

• To summarise:

- 4 scalars:
$$A, B^{(S)}, H_L, H_T$$

- 2 vectors: $B^{(V)}, H^{(V)}$
- 1 tensor: $H^{(T)}$

4 x 1 d.o.f.

- 2 x 2 d.o.f.
- 1 x 2 d.o.f.

= 10 d.o.f

2.2 Metric perturbations: decomposition...

• To summarise:

_	4 scalars:	A , $B^{\left(S ight)}$, H_{L} , H_{T}	4 x 1 d.o.f.
_	2 vectors:	$B^{(V)}$, $H^{(V)}$	2 x 2 d.o.f.
_	1 tensor:	$H^{(T)}$	1 x 2 d.o.f.

 $= 10 \, \text{d.o.f}$

- Not all 10 d.o.f. are physical!
 - **Four** are gauge modes.
- Gauge modes arise because we are free to choose the mapping between the real, inhomogeneous spacetime to the fictitious FLRW spacetime around which we formulate the perturbation theory.

2.2 Metric perturbations: gauge modes...

2.2 Metric perturbations: gauge modes...

• A bit of common sense tells us that:

Physical
d.o.f.1 tensor; $1 \ge 2$ d.o.f.1 vector; $1 \ge 2$ d.o.f.1 vector; $1 \ge 2$ d.o.f.2 scalars; $2 \ge 1$ d.o.f.2 scalars; $2 \ge 1$ d.o.f.2 scalars; $2 \ge 1$ d.o.f.

Gauge modes

2.2 Metric perturbations: gauge modes...

• A bit of common sense tells us that:

Physical d.o.f.	1 tensor; 1 x 2 d.o.f.				
	1 vector; 1 x 2 d.o.f.	1 vector; 1 x 2 d.o.f.	Gauge		
	2 scalars; 2 x 1 d.o.f.	2 scalars; 2 x 1 d.o.f.	modes		

- We can remove redundant degrees of freedom by, e.g.,
 - Scalars: setting any two of A, $B^{(S)}$, H_T and H_L to zero.
 - Vectors: setting any one of $B^{(V)}$ and $H^{(V)}$ to zero.
- Warning! Your results may still contain gauge artifacts!

2.3 Gauge-invariant PT...

• Consider a change of mapping as a coordinate transformation in the real, inhomogeneous spacetime, but **not** in the fictitious FLRW background.

Gauge transformation law

$$\longrightarrow a^{2} h'_{\mu\nu}(x) = a^{2} h_{\mu\nu}(x) - \overline{g}_{\mu\nu}(x) \partial_{\nu} \xi^{\nu} - \overline{g}_{\nu\nu}(x) \partial_{\mu} \xi^{\nu} - \xi^{\nu} \partial_{\nu} \overline{g}_{\mu\nu}(x)$$

To first order in $h_{\mu\nu}$ and ξ

2.3 Gauge-invariant PT: gauge transformations...

• Gauge transformation laws for scalar, vector and tensor components:

$$A' = A - \frac{\partial T}{\partial \eta} - \mathscr{W}T \qquad H_L' = H_L - \frac{1}{3} \partial^2 L^{(S)} - \mathscr{W}T$$
$$B^{(S)} = B^{(S)} - T + \frac{\partial L}{\partial \eta}^{(S)} \qquad H_T' = H_T - L^{(S)}$$
$$H^{(V)} = H^{(V)} - L^{(V)}$$
$$H^{(T)} = H^{(T)}$$

$$T \equiv \xi^0$$
, $\xi_i \equiv \partial_i L^{(S)} + L^{(V)}_i$

2.3 Gauge-invariant PT: Bardeen potentials...

• For scalar perturbations, the Bardeen potentials are invariant under gauge transformation:

$$\Psi \equiv A - \frac{1}{a} \frac{\partial}{\partial \eta} \left[a \left(\frac{\partial H_T}{\partial \eta} + B^{(S)} \right) \right]$$
$$\Phi \equiv -H_L + \frac{1}{3} \partial^2 H_T + \mathscr{H} \left(B^{(S)} + \frac{\partial H_T}{\partial \eta} \right)$$

2.3 Gauge-invariant PT: Bardeen potentials...

• For scalar perturbations, the Bardeen potentials are invariant under gauge transformation:

$$\Psi \equiv A - \frac{1}{a} \frac{\partial}{\partial \eta} \left[a \left(\frac{\partial H_T}{\partial \eta} + B^{(S)} \right) \right]$$
$$\Phi \equiv -H_L + \frac{1}{3} \partial^2 H_T + \mathscr{H} \left(B^{(S)} + \frac{\partial H_T}{\partial \eta} \right)$$

Observe that:

$$\Psi = A(H_T = 0, B^{(S)} = 0)$$

$$\Phi = -H_L(H_T = 0, B^{(S)} = 0)$$

Newtonian gauge

2.3 Gauge-invariant PT: Newtonian gauge...

• Spacetime metric with scalar perturbations in the Newtonian gauge:

$$ds^{2} = a^{2}(\eta) [-(1+2\Psi)d\eta^{2} + (1-2\Phi)\delta_{ij}dx^{i}dx^{j}]$$

- The Newtonian gauge is a convenient gauge choice because:
 - It is diagonal!
 - The perturbation variables correspond to gauge-invariant quantities.
 - In the nonrelativistic limit, $\Psi = \Phi$ corresponds to the Newtonian gravitational potential.

2.3 Gauge-invariant PT: gauge fixing...

• The Newtonian gauge is **not** the only gauge choice with the property that the perturbations degrees of freedom correspond to gauge-invariant variables.

- In general, if the gauge choice completely specifies the gaugetransformation variables *T*, *L*^(S), and *L*^(V), then the gauge is completely fixed.
 - The remaining perturbation degrees of freedom automatically correspond to gauge-invariant variables.

2.3 Gauge-invariant PT: Newtonian gauge...

• The Newtonian gauge is completely fixed:

$$H_{T}'=0 \implies L^{(S)}=H_{T}$$

$$B^{(S)}'=0 \implies T=B^{(S)}+\frac{\partial L}{\partial \eta}^{(S)}=B^{(S)}+\frac{\partial H_{T}}{\partial \eta}$$

• Gauge-invariants:

$$A' = A - \left(\frac{\partial}{\partial \eta} + \mathscr{W}\right) \left(B^{(S)} + \frac{\partial H_T}{\partial \eta}\right)$$

$$H_L' = H_L - \frac{1}{3} \partial^2 H_T - \mathscr{W} \left(B^{(S)} + \frac{\partial H_T}{\partial \eta}\right)$$

Bardeen potentials

2.3 Gauge-invariant PT: spatially flat gauge...

• The spatially flat gauge is completely fixed:

$$H_{T}'=0 \implies L^{(S)}=H_{T}$$
$$H_{L}'=0 \implies T=\frac{1}{\mathscr{H}}\left(H_{L}-\frac{1}{3}\partial^{2}H_{T}\right)$$

• Gauge-invariants:

$$A' = A - \frac{\partial}{\partial \eta} \left[\frac{1}{\mathscr{W}} \left(H_L - \frac{1}{3} \partial^2 H_T \right) \right] - H_L + \frac{1}{3} \partial^2 H_T$$
$$B^{(S)} = B^{(S)} - \frac{1}{\mathscr{W}} \left(H_L - \frac{1}{3} \partial^2 H_T \right) + \frac{\partial H_T}{\partial \eta}$$

2.3 Gauge-invariant PT: synchronous gauge...

• The synchronous gauge is NOT completely fixed.

$$A'=0 \implies \frac{\partial T}{\partial \eta} + \mathscr{W}T = \frac{1}{a} \frac{\partial (aT)}{\partial \eta} = A$$

$$\Rightarrow T = a^{-1} \int A a d \eta + C_1 a^{-1}$$

$$B^{(S)}'=0 \implies \frac{\partial L}{\partial \eta}^{(S)} = T - B^{(S)}$$

$$\Rightarrow L^{(S)} = \int (T - B^{(S)}) d \eta + C_2$$

• C_1 and C_2 are unknown integration constants \rightarrow The remaining d.o.f.s H_L and H_T may suffer from spurious gauge effects.

2.3 Gauge-invariant PT: vector perturbations...

• The vector gauge is completely fixed:

$$H(V)' = 0 \implies L^{(V)} = H^{(V)}$$

Gauge-invariant
$$\Rightarrow B(V)' = B(V) + \frac{\partial H}{\partial \eta}^{(V)}$$

• Gauge choice 2 is **not completely fixed**:

$$B^{(V)}' = 0 \implies \frac{\partial L}{\partial \eta}^{(V)} = B^{(V)}$$
$$\Rightarrow L^{(V)} = \int B^{(V)} d\eta + C_1$$

2.4 Perturbations in $T_{\mu\nu}$...

• Perturbed stress-energy tensor:

$$T_{\mu\nu} = \overline{T}_{\mu\nu} + \delta T_{\mu\nu}, \quad |\delta T_{\mu\nu}| \ll \overline{\rho}$$

• For a perfect fluid:

$$T^{\mu}_{\nu(\alpha)} = (\rho_{\alpha} + P_{\alpha})u^{\mu}u_{\nu} + g^{\mu}_{\nu}P_{\alpha}$$

 $- \rho_{\alpha} = \overline{\rho}_{\alpha} + \delta \rho_{\alpha} = \overline{\rho}_{\alpha} (1 + \delta_{\alpha}) = \text{energy density in the fluid's rest frame}$

- $P_{\alpha} = \overline{P}_{\alpha} + \delta P_{\alpha}$ = pressure in the fluids's rest frame

-
$$u^{\mu}$$
 = 4-velocity of fluid; $|u^{i}| \ll |u^{0}|$

Small quantities in our picture

2.4 Perturbations in T_{uv} : fluid perturbations...

• To first order in small quantities:

$$T^{0}_{\ 0(\alpha)} = -\overline{\rho}_{\alpha} - \delta \rho_{\alpha} \qquad T^{i}_{\ 0(\alpha)} = -(\overline{\rho}_{\alpha} + \overline{P}_{\alpha}) v^{i}_{\alpha}$$
$$T^{0}_{\ i(\alpha)} = (\overline{\rho}_{\alpha} + \overline{P}_{\alpha}) (v_{\alpha i} - B_{i}) \qquad T^{i}_{\ j(\alpha)} = \overline{P}_{\alpha} \delta^{i}_{j} + \delta P_{\alpha} \delta^{i}_{j}$$

- $\delta \rho_{\alpha}$ = energy density perturbation
- δP_{a} = pressure perturbation
- $v_{\alpha}^{i} \equiv dx^{i}/d\eta$ = peculiar velocity As measured by a comoving observer

2.4 Perturbations in T_{uv} : fluid perturbations...

• To first order in small quantities:

$$T^{0}_{0(\alpha)} = -\bar{\rho}_{\alpha} - \delta\rho_{\alpha} \qquad T^{i}_{0(\alpha)} = -(\bar{\rho}_{\alpha} + \bar{P}_{\alpha})v^{i}_{\alpha}$$

$$T^{0}_{i(\alpha)} = (\bar{\rho}_{\alpha} + \bar{P}_{\alpha})(v_{\alpha i} - B_{i}) \qquad T^{i}_{j(\alpha)} = \bar{P}_{\alpha}\delta^{i}_{j} + \delta P_{\alpha}\delta^{i}_{j} + \Pi^{i}_{j(\alpha)}$$

$$-\delta\rho_{\alpha} = \text{energy density perturbation} \qquad \Pi^{i}_{i} = 0$$

- δP_{a} = pressure perturbation

- Traceless 3-tensor
- $v_{\alpha}^{i} \equiv dx^{i}/d\eta$ = peculiar velocity As measured by a comoving observer
- $\Pi_{j(\alpha)}^{i}$ = anisotropic stress in fluid's rest frame (imperfect fluid)

2.4 Perturbations in $T_{\mu\nu}$: gauge transformation laws...

• Fluid perturbations also change under gauge transformation, via

$$\delta T^{\mu}_{\nu}'(x) = \delta T^{\mu}_{\nu}(x) - \overline{T}^{\mu}_{\gamma} \partial_{\nu} \xi^{\gamma} + \overline{T}^{\gamma}_{\nu} \partial_{\gamma} \xi^{\mu} - \xi^{\gamma} \partial_{\gamma} \overline{T}^{\mu}_{\nu}$$

• Transformation laws for scalar, vector and tensor fluid perturbations:

$$\delta \rho' = \delta \rho - T \frac{\partial \overline{\rho}}{\partial \eta} \qquad \qquad \nu^{(S,V)} = \nu^{(S,V)} + \frac{\partial L}{\partial \eta}^{(S,V)}$$
$$\delta P' = \delta P - T \frac{\partial \overline{P}}{\partial \eta} \qquad \qquad \Pi^{(S,V,T)} = \Pi^{(S,V,T)}$$

2.5 Einstein equation...

We derive equations of motion for the perturbations from:

$$\overline{G}_{\mu\nu} + \delta G_{\mu\nu} = 8 \pi G \left(\overline{T}_{\mu\nu} + \delta T_{\mu\nu} \right)$$

$$\delta G_{\mu\nu} = \delta G_{\mu\nu}^{(S)} + \delta G_{\mu\nu}^{(V)} + \delta G_{\mu\nu}^{(T)} \qquad \delta T_{\mu\nu} = \delta T_{\mu\nu}^{(S)} + \delta T_{\mu\nu}^{(V)} + \delta T_{\mu\nu}^{(T)}$$

To **linear order** in small quantities: •

Linear

Linear
functions
$$\begin{cases} \delta G_{\mu\nu}^{(S)}(A, B^{(S)}, H_L, H_T) = 8\pi G \,\delta T_{\mu\nu}^{(S)}(\rho, P, \nu^{(S)}, \Pi^{(S)}) \\ \delta G_{\mu\nu}^{(V)}(B^{(V)}, H^{(V)}) = 8\pi G \,\delta T_{\mu\nu}^{(V)}(\nu^{(V)}, \Pi^{(V)}) \\ \delta G_{\mu\nu}^{(T)}(H^{(T)}) = 8\pi G \,\delta T_{\mu\nu}^{(T)}(\Pi^{(T)}) \end{cases}$$

Linear functions

Scalar, vector and tensor perturbations evolve independently. •

2.5 Einstein equation: scalar perturbations...

• Scalar equations of motion:

$$\partial^{2} \Phi - 3 \mathscr{H} (\dot{\Phi} + \mathscr{H} \Psi) = 4 \pi G a^{2} \sum_{\alpha} \bar{\rho}_{\alpha} \delta_{\alpha}$$

$$\partial^{2} (\dot{\Phi} + \mathscr{H} \Psi) = -4 \pi G a^{2} \sum_{\alpha} (\bar{\rho}_{\alpha} + \bar{P}_{\alpha}) \partial^{2} v_{\alpha}^{(S)}$$

$$\ddot{\Phi} + \mathscr{H} (\dot{\Psi} + 2 \dot{\Phi}) + (2 \mathscr{H} + \mathscr{H}^{2}) \Psi + \frac{1}{3} \partial^{2} (\Phi - \Psi)$$

$$= 4 \pi G a^{2} \sum_{\alpha} \delta P_{\alpha}$$

$$\partial^{2} (\Phi - \Psi) = 8 \pi G a^{2} \sum_{\alpha} \partial^{2} \Pi_{\alpha}^{(S)}$$

• Of these equations, there are only two linearly independent combinations

2.5 Einstein equation: Fourier decomposition...

 The equations of motion are formally 2nd order linear PDEs → Can be solved by applying a Fourier transform:

$$f(\eta, x^{i}) = \frac{1}{(2\pi)^{3}} \int d^{3}k \,\tilde{f}(\eta, k^{i}) e^{ik_{i}x^{i}}$$

- k^i = comoving wavevector of perturbation

- For the EoMs: $\partial^2 \rightarrow -k_i k^i = -\delta_{ij} k^i k^j \equiv k^2$
- Fourier modes evolve independently of one another
- Evolution depends on absolute value of k, not the direction.

2.5 Einstein equation: scalar perturbations...

• Equations of motion for scalar perturbations in Fourier space:

$$-k^{2}\Phi - 3 \mathscr{H}(\dot{\Phi} + \mathscr{H}\Psi) = 4\pi G a^{2} \sum_{\alpha} \bar{\rho}_{\alpha} \delta_{\alpha}$$
(1)

$$(\dot{\Phi} + \mathscr{H}\Psi) = -4\pi G a^{2} \sum_{\alpha} (\bar{\rho}_{\alpha} + \bar{P}_{\alpha}) v_{\alpha}^{(S)}$$
(2)

$$\ddot{\Phi} + \mathscr{H}(\dot{\Psi} + 2\dot{\Phi}) + (2\dot{\mathscr{H}} + \mathscr{H}^{2}) \Psi - \frac{1}{3} k^{2} (\Phi - \Psi)$$
$$= 4\pi G a^{2} \sum_{\alpha} \delta P_{\alpha}$$

$$\Phi - \Psi = 8\pi G a^{2} \sum_{\alpha} \Pi_{\alpha}^{(S)}$$

2.5 Einstein equation: Newtonian limit...

Combine (1) and (2) to give:

$$-k^{2} \Phi = 4\pi G a^{2} \sum_{\alpha} \bar{\rho}_{\alpha} \left[\delta_{\alpha} - 3 \frac{\mathscr{H}}{k} (1 + w_{\alpha}) (k v_{\alpha}^{(S)}) \right]$$

• Important quantity:

•

$$\frac{\mathscr{H}}{k} \sim \frac{\text{Hubble length}^{-1}}{\text{Comoving wavelength}^{-1}}$$

>> 1 \rightarrow "Super-horizon" << 1 \rightarrow "Sub-horizon"

• In the subhorizon limit:

$$-k^2\Phi \simeq 4\pi G a^2 \sum_{\alpha} \overline{\rho}_{\alpha} \delta_{\alpha} \qquad -$$

Poisson equation in Newtonian gravity (if nonrelativistic matter)

If quantifies the length scale at which we expect "genuine" GR effects to arise.

2.5 Einstein equation: scalar perturbations...

• Conservation of energy-momentum: $\nabla_{\mu}T^{\mu\nu}_{(\alpha)}=0$

$$(\frac{\partial}{\partial \eta} + 3 \mathscr{G}) \delta \rho_{\alpha} + 3 \mathscr{G} \delta P_{\alpha} = (\bar{\rho}_{\alpha} + \bar{P}_{\alpha}) (k^{2} v_{\alpha}^{(s)} + 3 \dot{\Phi})$$
$$(\frac{\partial}{\partial \eta} + 4 \mathscr{G}) [(\bar{\rho}_{\alpha} + \bar{P}_{\alpha}) v_{\alpha}^{(s)}] = -\delta P_{\alpha} + \frac{2}{3} k^{2} \Pi_{\alpha}^{(s)} - (\bar{\rho}_{\alpha} + \bar{P}_{\alpha}) \Psi$$

2.5 Einstein equation: scalar perturbations...

• Conservation of energy-momentum: $\nabla_{\mu}T^{\mu\nu}_{(\alpha)}=0$

$$\left(\frac{\partial}{\partial\eta} + 3\mathscr{M}\right)\delta\rho_{\alpha} + 3\mathscr{M}\delta P_{\alpha} = (\bar{\rho}_{\alpha} + \bar{P}_{\alpha})(k^{2}v_{\alpha}^{(s)} + 3\dot{\Phi})$$

$$\left(\frac{\partial}{\partial\eta} + 4\mathscr{M}\right)\left[(\bar{\rho}_{\alpha} + \bar{P}_{\alpha})v_{\alpha}^{(s)}\right] = -\delta P_{\alpha} + \frac{2}{3}k^{2}\Pi_{\alpha}^{(s)} - (\bar{\rho}_{\alpha} + \bar{P}_{\alpha})\Psi$$

- Not enough equations?
 - **Perfect fluid** ($\Pi_{\alpha} = 0$): $\delta P_{\alpha} \& \delta \rho_{\alpha}$ linked by the fluid sound speed:

$$c_s^2 \equiv \frac{\delta P_{\alpha}}{\delta \rho_{\alpha}}$$
 Property of fluid α

- Imperfect fluid ($\Pi_{\alpha} \neq 0$): need other supplementary equations (e.g., Boltzmann equation).

2.5 Einstein equation: vector perturbations...

• Equations of motion for vector perturbations in Fourier space:

$$k^{2} (B^{(V)} + \dot{H}^{(V)}) = 16 \pi G a^{2} \sum_{\alpha} (\bar{\rho}_{\alpha} + \bar{P}_{\alpha}) (v_{\alpha}^{(V)} - B_{\alpha}^{(V)})$$
$$(\frac{\partial}{\partial \eta} + 2 \mathscr{W}) (B^{(V)} + \dot{H}^{(V)}) = -8 \pi G a^{2} \sum_{\alpha} \Pi_{\alpha}^{(V)}$$

Energy-momentum conservation

$$\left(\frac{\partial}{\partial \eta} + 4 \mathscr{G}\right) \left[\left(\overline{\rho} + \overline{P}\right) \left(\nu^{(V)} - B^{(V)} \right) \right] = \frac{1}{2} \Pi_{\alpha}^{(V)}$$

2.5 Einstein equation: tensor perturbations...

• Equations of motion for tensor perturbations in Fourier space:

$$\ddot{H}^{(T)} + 2 \mathscr{W} \dot{H}^{(T)} + k^2 H^{(T)} = 4 \pi G a^2 \sum_{\alpha} \Pi_{\alpha}^{(T)}$$
Gravitational waves!
$$g_{ij} = a^2 \begin{pmatrix} 1 + H_{+}^{(T)} & H_{\times}^{(T)} & 0 \\ H_{\times}^{(T)} & 1 - H_{+}^{(T)} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
Traceless;
transverse (divergenceless)

2 d.o.f = 2 polarisations

2.6 Section summary...

- Perturbations in the spacetime metric can be decomposed into 4 scalar, 2 vector, and 1 tensor components.
 - **Caution**: 2 scalars and 1 vector are gauge modes!
- Fluid perturbations are expressed in terms of a perturbed stress-energy tensor, which can likewise be decomposed in terms of rotation invariants.
- Metric and fluid perturbations are related via the Einstein equation.
 - At 1st order: one independent set of equations for each of the scalar, vector, and tensor components.
 - Fourier decomposition: *k* modes evolve independently of one another.