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● Just as inflation predicts only the fluctuation statistics, we can also only 
measure the clustering statistics of matter.

● Lowest order: 2-point spectrum (matter power spectrum):

● From theory:

5.11 The matter power spectrum...

Pδ(k ,η)= 4
9

k 4 a2(η)
Ωm

2 H 0
4 PΦ(k ,η)= 4

9
k 4 a 2(η)
Ωm

2 H 0
4 T 2(k ,η)PΦp

(k )

〈δm (k ,η)δm(k ' ,η)〉=(2π)3δD
(3)(k+k ' )Pδ(k ,η)

Einstein equation in 
the subhorizon limit Transfer function ∝k n S−4

From section 4.4
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● What to do in the nonlinear regime?

– Higher order perturbation theory

● It's fun, but applicability is limited.

– Numerical simulations (N-body)

● Discretise fluid into point particles moving under each 
other's gravity → Works for non-interacting matter.

● Tracking baryons on cluster/galaxy scales (k > 1 Mpc-1) 
requires hydrodynamics.

5.11 The matter power spectrum...



  

● We do not observe the actual matter density field.

– Rather, we observe tracers, and assume that their clustering 
properties follow those of the underlying matter density field.

● For galaxy surveys, this means the assumption:

– The bias value depends on the tracers; cannot be predicted 
from first principles...

– Expected to be constant for small k modes, but certainly 
becomes scale-dependent for large values of k...

5.11 The matter power spectrum: bias...

δngal(k )
n̄gal

=bδm(k ) b = bias



  Tegmark et al. [SDSS] 2006

Empirically corrected for
scale-dependent bias

Inferred power spectrum for
matter density field (up to 
a constant factor)

Luminous red galaxies

Main galaxy sample

Sloan Digital Sky Survey DR 4



  

● Another way to probe the large-scale structure distribution.

● CMF = abundance of galaxies/galaxy cluster as a function of mass.

5.12 Cluster mass function...

Vikhlinin et al. 2009



  

● Not exactly calculable from perturbation theory.

● But there are some fitting functions (calibrated against ΛCDM N-body 
simulations) using the linear matter power spectrum as input.

– e.g., 

● Warning: fitting formulae are cosmology-dependent; may not apply if you 
cosmological model strays too far from standard ΛCDM...  

5.12 Cluster mass function...

f (M )=0.315exp [−∣lnσ−1+0.61∣3.8
] Jenkins et al. 2000

σ2(M )= 1

2π2∫ dk k 2 Pδ(k)W
2(k , M )



  

● Shape of matter power spectrum is sensitive to:

– Scalar spectral index of the primordial curvature perturbation 
spectrum from inflation.

– Location of the turning point k
eq probes comoving Hubble rate 

at matter-radiation equality.
● If the radiation energy density is precisely known, this 

provides a measurement of Ω
m
h.

– Shape, especially at k >> k
eq
, is also sensitive to the baryon 

fraction and massive neutrino fraction.

● Beware of nonlinearities and scale-dependent bias at large k values!

5.13 Section summary...



  

6. Approximate solutions II:
CMB temperature fluctuations...



  

● The most important event in the 
photon evolution history is 
decoupling (T* ~ 0.25 eV).

● In most cosmological models, 
photon decoupling happens during 
early matter domination (z* ~ 1100).  

→ Evolution of CMB fluctuations 
can be studied in two steps:

– Evolution up to decoupling 
(super- or subhorizon?)

– Evolution after decoupling: 
free-streaming

6.1 General remarks...



  

● Scalar Boltzmann equation for photons in the superhorizon limit:

● Supposing:

– Adiabatic initial conditions: 

– Decoupling happens during MD:

● At decoupling:

6.2 Superhorizon up to decoupling...

δ̇γ=4 Θ̇0
(S )≃4 Φ̇

(Θ0
(S )+Ψ)(k≪H * ,η*)=

1
3
Φ(k ,η*)=−

1
6
δc(k ,η*)

Ψ(k ,η*)≃Φ(k ,η*)=
9

10
Φp(k )

Θ0
(S )(k ,η=0)=−Φp(k)/ 2Well-founded

assumptions!

From section 4.2

From section 5.4

From section 5.4



  

● What does this mean?

● (Θ(S)
0
 + Ψ)(η

*
) is the effective temperature at decoupling.

→ An observed photon hot spot corresponds to an underdense region.

6.2 Superhorizon up to decoupling...

(Θ0
(S )+Ψ)(k ,η*)=−

1
6
δc (k , η*)

Overdense region = Intrinsically hotter photons;
adiabatic initial conditions: 3Θ(S)

0
 = δ

c

Perturbation of some wavelength

Ψ=0

ObserverRedshift Blueshift

Observed photon energy 
changed by a factor (1 + Ψ) 
due to gravitational redshift



  

● For those k modes that are subhorizon at photon decoupling, the tightly-
coupled limit (between photons and baryons) applies.

● Equations of motion for baryons and photons in this limit:

● Baryon-to-photon ratio:

6.3 Subhorizon @ decoupling: acoustic oscillations...

δ̇γ−
4
3

k 2 vγ
(S )−4 Φ̇=0 v̇γ

(S )+1
4
δγ+Ψ=−κ̇(v b

(S )−vγ
(S ))

δ̇b−k 2 vb
(S )−3Φ̇=0 v̇b

(S )+H v b
(S)−Ψ=−κ̇

R
(vb
(S )−vγ

(S ))

R≡3
4

ρ̄b

ρ̄γ
=3

4

Ωb h2

Ωγ h2 a

(1)

(2)



  

● Tightly-coupled limit means                   .

– Take (2) and expand to first order in            :

– Feed back into (1).

● A driven and damped harmonic oscillator with sound speed:

6.3 Subhorizon @ decoupling: acoustic oscillations...

Θ̈0
(S )+ Ṙ

1+R
Θ̇0
(S )+k 2 cs

2Θ0
(S )=Φ̈+ Ṙ

1+R
Φ̇− k 2

3
Ψ

vb
(S )=vγ

(S )−
H
κ̇

R [ 1
H

γ̇γ
(S)+ 1

H
Ψ+vγ

(S )]+O(H
2

κ̇2 )
H / κ̇

cs
2≡ 1

3(1+R)

H / κ̇≪1

δγ=4Θ0
(S )

The presence of baryons
lowers the fluid sound speed



  

● Suppose Φ, Ψ = constant (i.e., deep in MD).

● For adiabatic initial conditions, the WKB solution is:

● Sound horizon:

6.3 Subhorizon @ decoupling: acoustic oscillations...

(k c s)
2≫ Ṙ2/(1+R)2

[Θ0
(S )+Ψ](k ,η)=[Θ0

(S )+(1+R)Ψ](k ,0)cos (k r s)−RΨ

Θ1
(S )(k ,η)=−cs [Θ0

(S )+(1+R)Ψ](k , 0)sin (k rs)

r s(η)≡∫
0

η

d η ' cs(η' )

WKB approximation

Monopole

Dipole

Coordinate distance
travelled by a sound
wave since η = 0



  

● Suppose baryons are negligible: R = 0.

● Time evolution for a particular k mode → acoustic oscillations.

6.3 Subhorizon @ decoupling: acoustic oscillations...

In an underdense region

In an overdense region

Gravity pulling photons into 
dense regions (compression)

Pressure pushing 
photons out



  

● Suppose baryons are negligible: R = 0.

● Time evolution for a particular k mode → acoustic oscillations.

6.3 Subhorizon @ decoupling: acoustic oscillations...

Gravity pulling photons into 
dense regions (compression) 

Pressure pushing 
photons out

Effective 
monopole

Dipole

In an overdense region

Monopole and dipole are 
exactly out of phase. 



  

● Spectrum at photon decoupling:

● Position of 1st peak corresponds to the k mode that has completed 
exactly one compression at photon decoupling.

6.3 Subhorizon @ decoupling: acoustic oscillations...

Peak positions:

k p=
nπ

r s(η*)
, n=1,2,3,. ..

Monopole and dipole
add incoherently (look 
at the Legendre series)

Normalised to initial values of Θ(S)
0 

Effective monopole

Dipole

k0

1st peak
R=0



  

● Now put the baryons back in, i.e., R ≠ 0.

● The presence of baryons offsets the midpoint of oscillations for the 
effective monopole, reduces the sound horizon, and alters the 
oscillation amplitudes (monopole and dipole).

6.3 Subhorizon @ decoupling: acoustic oscillations...

R=0 Effective
monopole

Dipole

R≠0



  

6.3 Subhorizon @ decoupling: acoustic oscillations...

Gravity pulling photons into 
dense regions (compression) 

Reduced pressure pushing 
photons out

● Physical reason:

● A reduced sound speed due to baryon inertia leads to less pressure 
resistance → the photons are compressed more and become hotter.    

Effective
monopole

Dipole



  

● Spectrum at decoupling:

● Using time-dependent Φ and Ψ changes the peak heights and positions a 
little, but the essential features remain. 

6.3 Subhorizon @ decoupling: acoustic oscillations...

k

Effective
monopole

Dipole

0

R≠0
Odd and even peaks now
have different heights.

Height ratio depends on the 
baryon-to-photon ratio R.

Normalised to initial values of Θ(S)
0 



  

● In reality, the motion of the photons and 
the baryons cannot be exactly identical.

– Photons random walk between 
Thomson scattering with 
electrons → diffusion.

– Diffusion washes out temperature 
perturbations on scales smaller 
than the diffusion length:

6.3 Subhorizon @ decoupling: diffusion damping...

λD=√N scatterλMFP

≃ 1

√neσT H

Photon mean 
free path

OR Silk damping

~ a few Mpc at decoupling



  

● In our Fourier analysis, diffusion damping means an exponential 
suppression of temperature fluctuations on at k > k

D
.

● Diffusion scale:

– Obtained by keeping Θ(S)
2
 in the photon Boltzmann hierarchy in 

this approximate treatment.

6.3 Subhorizon @ decoupling: diffusion damping...

Θ0
(S )(k ,η) ,Θ1

(S )(k ,η)∼exp (−k 2/ k D
2 )×oscillations

1

k D
2 (η)

≡∫
0

η
d η '

a(η ' ) n̄eσT [ R2+(4 /5)(1+R)
6(1+R)2 ]

(16/15) if including polarisation effects

OR Silk damping



  

● After photon decoupling at T ~ 0.25 eV (z ~ 1100), the universe becomes 
transparent to photons → photons free-stream.

● To understand the effect of free-streaming on the photon perturbations 
today (η = η

0
), go back to the Boltzmann equation for photons:

● Formal solution in the η
0
 → ∞ limit:

6.4 After decoupling: free-streaming...

∂ηΘ
(S )+i kμΘ(S)=

−i k μΨ+Φ̇+κ̇[Θ0
(S )−Θ(S)−1

2
P2(μ )Θ2

(S )+i kμ v b
(S)]

Θ(S )(k ,μ ,η)=∫
0

η0

d η' S̃ (k ,μ ,η)ei kμ (η '−η0)+κ(η ' )



  

● Decompose in terms of Legendre polynomial:

● Source function:

6.4 After decoupling: free-streaming...

Θ ℓ
(S )(k ,η0)=∫

0

η0

d η S (k ,η) j ℓ [k (η0−η)]

S (k ,η)≡g (η)[Θ0
(S )+Ψ]− d

d η
[g (η)v b

(S)]

+eκ(η)[Ψ̇+Φ̇]+1
4 ( 3

k 2

d 2

d η2+1) [g (η)Θ2
(S)]

Spherical Bessel functions

Visibility function g (η)≡κ̇ eκ(η)



  

● Visibility function: 

● Normalisation:

→ The visibility function is the 
probability a photon last-
scattered at time η.

→ g(η) peaks at decoupling 
(the last scattering surface)

6.4 After decoupling: free-streaming...

g (η)≡κ̇ eκ(η)

∫
0

η0

d η' g (η' )=1



  

● Now we can approximate the source function:

1. g(η) peaks at η = η
*
 → set g(η) = δ

D
(η – η*).  

2. Θ(S)
2
(η

*
) is not generated in a great amount at decoupling compared 

with Θ(S)
0
(η

*
), Θ(S)

1
(η

*
) → set Θ(S)

2
(η

*
) = 0.

3. Apply the tightly-coupled limit at η = η
*
 → set v

b
(S)(η

*
) = - (3/k) Θ(S)

1
(η

*
). 

6.4 After decoupling: free-streaming...

S (k ,η)≡g (η)[Θ0
(S )+Ψ]− d

d η
[g (η)vb

(S)]

+eκ(η)[Ψ̇+Φ̇]+1
4 ( 3

k 2

d2

d η2+1)[g (η)Θ2
(S)]

Θ ℓ
(S )(k ,η0)=

∫
0

η0

d η S (k ,η) j ℓ [k (η0−η)]



  

● Approximate solution:

● Term 1 & term 2: Monopole and dipole at decoupling are primarily 
responsible for the photon temperature fluctuations observed today . 

– Acoustic oscillations in Θ(S)
00
 and Θ(S)

1
 are “spread” to higher multipoles 

by free-streaming according to the spherical Bessel functions.

6.4 After decoupling: free-streaming...

Θ ℓ
(S )(k ,η0)≃[Θ0

(S )(k ,η*)+Ψ0
(S )(k ,η*)] j ℓ [k (η0−η*)]

− 3
k
Θ1
(S )(k ,η*)

d
d η

j ℓ [k (η0−η*)]

+∫
0

η0

d ηeκ(η)[ Ψ̇ (k ,η)+Φ̇(k ,η)] j ℓ [k (η0−η)]



  

6.4 After decoupling: free-streaming...

● j
ℓ
(x) peaks at x ~ ℓ (not exactly 

though).

→ Θ
ℓ
(η

0
) gets most contribution 

from k modes satisfying

→ We expect the 1st Θ
ℓ peak to 

occur today at

k∼ ℓ
η0−η*

Spherical Bessel functions

ℓ p∼k p (η0−η*)∼
π(η0−η*)

rs(η*)
From section 6.3



  

● Approximate solution:

● Term3: only present if metric perturbations are time-dependent →  
Integrated Sachs-Wolfe effect

– Important when |κ| << 1 (i.e., after decoupling)

6.4 After decoupling: free-streaming...

Θ ℓ
(S )(k ,η0)≃[Θ0

(S )(k ,η*)+Ψ0
(S )(k ,η*)] j ℓ [k (η0−η*)]

− 3
k
Θ1
(S )(k ,η*)

d
d η

j ℓ [k (η0−η*)]

+∫
0

η0

d ηeκ(η)[ Ψ̇ (k ,η)+Φ̇(k ,η)] j ℓ [k (η0−η)]



  

● Integrated Sachs-Wolfe (ISW) effect: except deep inside matter 
domination, subhorizon metric perturbations Φ and Ψ decay.

● Photons suffer less gravitational redshift than in the case of constant Φ 
and Ψ → Larger observed temperature fluctuations.

6.4 After decoupling: free-streaming...

ObserverRedshift

ObserverRedshift

time

Perturbation 
of some 
wavelength



  

● There are two ISW effects.

● Early ISW effect: photon decoupling occurs quite close to the transition 
from radiation to matter domination. 

– Residual radiation causes the metric perturbations to decay.

– Affects most strongly those k modes crossing the horizon at 
decoupling.

– Expect strongest contributions close to the first acoustic peak.

● Late ISW effect: the transition from matter domination to dark energy 
domination (i.e., now) also induces metric perturbation decay. 

– Expect contributions on scales close to the present-day horizon.

6.4 After decoupling: free-streaming...



  

● Recall the photon temperature field is 
parameterised as:  

6.5 Anisotropy power spectrum...

Θ(xi , niη0)=∑
ℓ=1

∞

∑
m=−ℓ

m= ℓ

a ℓ m( x
i ,η0)Y ℓ m (n

i)

a ℓ m (x
i ,η0)=∫ dΩY ℓ m

* (ni)Θ( xi , ni ,η0)
〈a ℓ m a ℓ ' m '

* 〉=δ ℓ ℓ 'δm m' C ℓ

T γ( x
i , ni ,η)=T̄ γ(η)[1+Θ(x

i , ni ,η)]

● We can only observe photons here and now → observed temperature 
fluctuations on a 2D spherical map can be decomposed in terms of 
spherical harmonics:

Direction of 3-momentum

Fluctuation power spectrum



  

● How to get C
ℓ
 from theory?  

● First rewrite a
ℓm

(x, η
0
) in terms of Θ

ℓ
(k, η

0
):

6.5 Anisotropy power spectrum...

〈a ℓ m a ℓ ' m '
* 〉=δ ℓ ℓ 'δm m' C ℓ

a ℓ m (x
i ,η0)=∫ dΩY ℓ m

* (ni )∫d 3 k

(2π)3
ei k i x i

×∑
ℓ=0

(−i)ℓ (2 ℓ+1)P ℓ (k
i ni / k )Θℓ (k ,η0)

C ℓ=
2
π∫d k k 2∣Θℓ(k ,η0)∣

2



  

6.5 Anisotropy power spectrum...

Larson et al. [WMAP7] 2010



  

● Why plot ℓ(ℓ + 1)C
ℓ
/2π?  

● Suppose the effective monopole at decoupling is given by [Θ(S)
0
+Ψ](k, η

*
) 

= Φ(k, η
*
)/3 = (3/10)Φ

p
(k) (cf modes outside horizon up to decoupling).

→ A constant ℓ(ℓ + 1)C
ℓ
/2π corresponds to a white-noise spectrum.

6.5 Anisotropy power spectrum...

C ℓ=
9

100

k 0
3 PΦp

(k 0)

2π2 [4π ∫
0

k η0→∞

d x x−1 j ℓ
2 (x)]

2π
ℓ ( ℓ+1)Dimensionless power 

spectrum from inflation
at the pivot scale

Assuming a scale-invariant
primordial power spectrum
nS=1



  

● A more or less flat ℓ(ℓ + 1)Cℓ/2π is in fact what we expect to see at low ℓ 

multipoles, where most contributions come from those k modes that 
were superhorizon at photon decoupling.

→ The Sachs-Wolfe plateau.

● A more general expression for an arbitrary scalar spectral index n
s
:

6.5 Anisotropy power spectrum: low multipoles...

C ℓ=
9

100

PΦp
(k 0)

2π(η0−η*)
nS−1 ( k 0

2 )
4−nS Γ(ℓ+nS /2−1/2)Γ(3−nS )

Γ( ℓ+5/ 2−nS /2)Γ
2(2−nS /2)



  

6.5 Anisotropy power spectrum: high multipoles...

[Θ0
(S )+Ψ](k=ℓ /(η0−η*) , η*)

Naïve projection

Θ ℓ
(S )(k ,η0)≃
[Θ0

(S )(k ,η*)+Ψ0
(S)(k ,η*)] j ℓ [k (η0−η*)]

− 3
k
Θ1
(S)(k ,η*)

d
d η

j ℓ [k (η0−η*)]

+∫
0

η0

d ηeκ(η)[Ψ̇ (k ,η)+Φ̇(k ,η)] j ℓ [k (η0−η)]

Proper treatment of free-streaming 
shifts peaks a little from their naïvely 
expected positions.

ℓ p∼
π (η0−η*)

r s From section 6.5



  

6.5 Anisotropy power spectrum: high multipoles...

Θ ℓ
(S )(k ,η0)≃
[Θ0

(S )(k ,η*)+Ψ0
(S)(k ,η*)] j ℓ [k (η0−η*)]

− 3
k
Θ1
(S)(k ,η*)

d
d η

j ℓ [k (η0−η*)]

+∫
0

η0

d ηeκ(η)[Ψ̇ (k ,η)+Φ̇(k ,η)] j ℓ [k (η0−η)]

Monopole and dipole add incoherently 
(because of property of spherical 
Bessel function); adding dipole makes 
the troughs less prominent. 



  

6.5 Anisotropy power spectrum: high multipoles...

Θ ℓ
(S )(k ,η0)≃
[Θ0

(S )(k ,η*)+Ψ0
(S)(k ,η*)] j ℓ [k (η0−η*)]

− 3
k
Θ1
(S)(k ,η*)

d
d η

j ℓ [k (η0−η*)]

+∫
0

η0

d ηeκ(η)[Ψ̇ (k ,η)+Φ̇(k ,η)] j ℓ [k (η0−η)]

Early ISW effect contributes adds in 
phase with the monopole



  

7. Cosmological parameters from 
CMB temperature anisotropies...



  

● Some standard parameters to constrain...

– Matter density: Ω
m
h2

– Baryon density: Ω
b
h2

– Hubble parameter, spatial curvature, dark energy: h, Ω
K
, Ω

Λ

– Inflation parameters: scalar fluctuation amplitude A
S
, spectral 

index n
S

● The CMB temperature anisotropies do not measure these parameters 
per se, rather some combination thereof.

7.1 Cosmological parameters...



  

● The early ISW effect enhances the first peak because of the time-
dependence of the metric perturbations when transiting from RD to MD.

– The ratio of the 1st peak to the Sachs-Wolfe plateau, or of the 1st 
peak to the  3rd peak  can establish the early ISW effect.

– In standard ΛCDM, the only parameter controlling this transition  
is the time of matter-radiation equality.

● If we assume N
ν
 = 3 massless neutrinos, then this constitutes a 

measurement of Ω
m
h2; no conclusions yet if N

ν
 is not known.

7.2 CMB anisotropies measure z equality...

1+ zeq=
Ωm h2

Ωγh2+Ων h2≃
Ωm h2

Ωγh2

1
1+0.2271 N ν

Ωγh2=2.47×10−5



  

● Odd to even acoustic peak 
ratios are determined by

● Since Ω
γ
h2 is known, we have a 

measurement of Ω
b
h2.

● Probably the most robust (i.e. 
independent of cosmological 
model) parameter measurement 
from CMB.

7.3 CMB anisotropies measure baryon-photon ratio...

k

R≡3
4

ρ̄b

ρ̄γ
=3

4

Ωb h2

Ωγ h2 a



  

● Position of the 1st acoustic peak is given approximately by

● If we had allowed for spatial curvature:

● A more general expression for the 1st peak position:

7.4 CMB anisotropies measure angular sound horizon..

ℓ p∼
π(η0−η*)

r(η*) η0−η*=χ (η*)

Comoving distance to
the last scattering surface

χ(η*)→
sin χ(η*)

sinh χ(η*)

Sound horizon 
at decoupling

K = +1
K = -1

θs≡
π
ℓp

=
a (η*)r s(η*)

d A(η*)
Angular sound horizon

Angular diameter distance 
to the last scattering surface



  

● For fixed z
eq

, Ω
b
h2,  and a(η

*
), the main parameter dependence of θ

s
 in flat 

ΛCDM is:

● If Ω
m
h2 is known, then the angular sound horizon provides a 

measurement of the Hubble parameter h.

● If Ω
m
h2 is not known (e.g., because we do not know the exact radiation 

content), then Ω
m
h2 and h are exactly degenerate parameters.

● More degeneracies if the dark energy has a nontrivial equation of state.

7.4 CMB anisotropies measure angular sound horizon..

θs∝
(Ωm h2)−1 /2

∫
aη*

1
d a

a2√Ωm h2 a−3+(h2−Ωm h2)



  

● Only possible with recent measurements from ACT and SPT.

7.5 CMB anisotropies measure the damping scale...

Dunkley et al. [ACT] 2010



  

● Angular damping scale (with z
eq
, Ω

b
h2 and a(η

*
) fixed):

● Combine with measurement of angular sound horizon:

→  A measurement of the matter density that is independent of the 
assumptions about spatial curvature, dark energy, etc. (because the 
angular diameter distance has now factored out).

7.5 CMB anisotropies measure the damping scale...

θD≡
rD (η*)
d A(η*)

∝
(Ωm h2)−1 /4

∫
aη*

1
d a

a2√Ωm h2 a−3+(h2−Ωm h2)

rD (η)≡
1

k D (η)
From section 6.4

Diffusion damping

θD

θ s
=

rD(η*)
rs(η*)

∝(Ωm h2)1/4



  

● Measurements of the CMB damping tail by ACT and SPT seem to 
suggest that the number of neutrino species is larger than 3!

Dunkley et al. [Atacama Cosmology Telescope] 2010 Keisler et al. [South Pole Telescope] 2011

WMAP+ACT

WMAP+ACT+H
0
+BAO

WMAP

7.5 CMB anisotropies measure the damping scale...



  

● The CMB temperature anisotropies are sensitive to:

– The redshift of matter-radiation equality (1st to 3rd peak heights, 
1st peak height to Sachs-Wolfe plateau).

– The baryon-to-photon ratio (odd to even peak heights)

– The angular sound horizon (peak positions)

– The angular damping scale (damping tail)

● Combining these measurements, it is possible to constrain the underlying 
cosmological model parameters.

● Beware of parameter degeneracies!

7.6 Section summary...
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