Cosmic microwave background and large-scale structure

Yvonne Y. Y. Wong RWTH Aachen

IMPRS Block course, MPP, March 5 – 8, 2012

Plan...

- 1. Review: Homogeneous and isotropic universe
- 2. Inhomogeneities I: cosmological perturbation theory
- 3. Inhomogeneities II: Boltzmann equation
- 4. Initial conditions
- 5. Approximate solutions I: matter density perturbations
- 6. Approximate solutions II: CMB temperature fluctuations
- 7. Cosmological parameters from CMB temperature anisotropies

5.11 The matter power spectrum...

- Just as inflation predicts only the fluctuation statistics, we can also only measure the clustering statistics of matter.
- Lowest order: 2-point spectrum (matter power spectrum):

$$\langle \delta_m(\mathbf{k}, \mathbf{\eta}) \delta_m(\mathbf{k}', \mathbf{\eta}) \rangle = (2\pi)^3 \delta_D^{(3)}(\mathbf{k} + \mathbf{k}') P_{\delta}(\mathbf{k}, \mathbf{\eta})$$

From theory:

Einstein equation in the subhorizon limit From section 4.4

From theory: Einstein equation in the subhorizon limit Transfer function
$$\propto k^{n_s-4}$$

$$P_{\delta}(k,\eta) = \frac{4}{9} \frac{k^4 a^2(\eta)}{\Omega_m^2 H_0^4} P_{\Phi}(k,\eta) = \frac{4}{9} \frac{k^4 a^2(\eta)}{\Omega_m^2 H_0^4} T^2(k,\eta) P_{\Phi_p}(k)$$

Transfer function

5.11 The matter power spectrum...

What to do in the nonlinear regime?

Higher order perturbation theory

It's fun, but applicability is limited.

Numerical simulations (N-body)

- Discretise fluid into point particles moving under each other's gravity → Works for non-interacting matter.
- Tracking baryons on cluster/galaxy scales ($k > 1 \text{ Mpc}^{-1}$) requires hydrodynamics.

5.11 The matter power spectrum: bias...

- We do not observe the actual matter density field.
 - Rather, we observe tracers, and assume that their clustering properties follow those of the underlying matter density field.
- For galaxy surveys, this means the assumption:

$$\frac{\delta n_{\text{gal}}(k)}{\overline{n}_{\text{gal}}} = b \delta_m(k)$$
 b = bias

- The bias value depends on the tracers; cannot be predicted from first principles...
- Expected to be constant for small k modes, but certainly becomes scale-dependent for large values of k...

5.12 Cluster mass function...

- Another way to probe the large-scale structure distribution.
- CMF = abundance of galaxies/galaxy cluster as a function of mass.

5.12 Cluster mass function...

- Not exactly calculable from perturbation theory.
- But there are some fitting functions (calibrated against ΛCDM N-body simulations) using the linear matter power spectrum as input.

- e.g.,
$$f(M) = 0.315 \exp\left[-\left|\ln\sigma^{-1} + 0.61\right|^{3.8}\right] \qquad \text{Jenkins et al. 2000}$$

$$\sigma^2(M) = \frac{1}{2\pi^2} \int dk \, k^2 P_{\delta}(k) \, W^2(k, M)$$

Warning: fitting formulae are cosmology-dependent; may not apply if you cosmological model strays too far from standard ΛCDM...

5.13 Section summary...

- **Shape** of matter power spectrum is sensitive to:
 - Scalar spectral index of the primordial curvature perturbation spectrum from inflation.
 - Location of the turning point $k_{\rm eq}$ probes comoving Hubble rate at matter-radiation equality.
 - If the radiation energy density is precisely known, this provides a measurement of $\Omega_m h$.
 - Shape, especially at $k >> k_{eq}$, is also sensitive to the baryon fraction and massive neutrino fraction.
- Beware of nonlinearities and scale-dependent bias at large k values!

6. Approximate solutions II: CMB temperature fluctuations...

6.1 General remarks...

- The most important event in the photon evolution history is decoupling (T* ~ 0.25 eV).
- In most cosmological models, photon decoupling happens during early matter domination (z* ~ 1100).
 - → Evolution of CMB fluctuations can be studied in **two steps**:
 - Evolution up to decoupling (super- or subhorizon?)
 - Evolution after decoupling:
 free-streaming

6.2 Superhorizon up to decoupling...

Scalar Boltzmann equation for photons in the superhorizon limit:

$$\dot{\delta}_{\gamma} = 4 \dot{\Theta}_{0}^{(S)} \simeq 4 \dot{\Phi}$$

Supposing:

assumptions!

From section 4.2

Well-founded - Adiabatic initial conditions:

 $\Theta_0^{(S)}(k, \eta = 0) = -\Phi_p(k)/2$

Decoupling happens during MD:

$$\Psi(k, \eta_*) \simeq \Phi(k, \eta_*) = \frac{9}{10} \Phi_p(k)$$

At decoupling:

From section 5.4

$$(\Theta_0^{(S)} + \Psi)(k \ll \mathscr{G}_*, \eta_*) = \frac{1}{3} \Phi(k, \eta_*) = \frac{1}{6} \delta_c(k, \eta_*)$$
From section 5.4

6.2 Superhorizon up to decoupling...

What does this mean?

$$(\Theta_0^{(S)} + \Psi)(k, \eta_*) = -\frac{1}{6} \delta_c(k, \eta_*)$$

• $(\Theta^{(S)}_{0} + \Psi)(\eta_{*})$ is the effective temperature at decoupling.

Perturbation of some wavelength

Overdense region = Intrinsically hotter photons; adiabatic initial conditions: $3\Theta^{(S)}_{0} = \delta_{c}$

Observed photon energy changed by a factor $(1 + \Psi)$ due to gravitational redshift

→ An observed photon hot spot corresponds to an underdense region.

- For those k modes that are **subhorizon** at photon decoupling, the tightlycoupled limit (between photons and baryons) applies.
- Equations of motion for baryons and photons in this limit:

$$\dot{\delta}_{\gamma} - \frac{4}{3} k^2 v_{\gamma}^{(S)} - 4 \dot{\Phi} = 0 \qquad \dot{v}_{\gamma}^{(S)} + \frac{1}{4} \delta_{\gamma} + \Psi = -\dot{\kappa} \left(v_b^{(S)} - v_{\gamma}^{(S)} \right) \tag{1}$$

$$\dot{\delta}_b - k^2 v_b^{(S)} - 3 \dot{\Phi} = 0 \qquad \dot{v}_b^{(S)} + \mathcal{W} v_b^{(S)} - \Psi = -\frac{\dot{\kappa}}{R} \left(v_b^{(S)} - v_{\gamma}^{(S)} \right) \tag{2}$$

• Baryon-to-photon ratio:
$$R = \frac{3}{4} \frac{\overline{\rho}_b}{\overline{\rho}_{\gamma}} = \frac{3}{4} \frac{\Omega_b h^2}{\Omega_{\gamma} h^2} a$$

- Tightly-coupled limit means $\mathcal{H}/\dot{\kappa} \ll 1$.
 - Take (2) and expand to first order in $\mathcal{H}/\dot{\kappa}$:

$$v_b^{(S)} = v_{\gamma}^{(S)} - \frac{\mathscr{M}}{\dot{\kappa}} R \left[\frac{1}{\mathscr{M}} \dot{\gamma}_{\gamma}^{(S)} + \frac{1}{\mathscr{M}} \Psi + v_{\gamma}^{(S)} \right] + O \left(\frac{\mathscr{M}^2}{\dot{\kappa}^2} \right)$$

Feed back into (1).

$$\begin{array}{c|c} \delta_{\gamma} = 4 \Theta_{0}^{(S)} \\ \hline \ddot{\Theta}_{0}^{(S)} + \frac{\dot{R}}{1 + R} \dot{\Theta}_{0}^{(S)} + k^{2} c_{s}^{2} \Theta_{0}^{(S)} = \ddot{\Phi} + \frac{\dot{R}}{1 + R} \dot{\Phi} - \frac{k^{2}}{3} \Psi \end{array}$$

A driven and damped harmonic oscillator with sound speed:

$$c_s^2 \equiv \frac{1}{3(1+R)}$$
 The presence of baryons lowers the fluid sound speed

• Suppose Φ , Ψ = constant (i.e., deep in MD).

WKB approximation

• For adiabatic initial conditions, the **WKB solution** is: $(k c_s)^2 \gg \dot{R}^2 / (1+R)^2$

$$[\Theta_0^{(S)} + \Psi](k, \eta) = [\Theta_0^{(S)} + (1+R)\Psi](k, 0)\cos(kr_s) - R\Psi \quad \text{Monopole}$$

$$\Theta_1^{(S)}(k, \eta) = -c_s[\Theta_0^{(S)} + (1+R)\Psi](k, 0)\sin(kr_s)$$
 Dipole

Sound horizon:

$$r_s(\eta) \equiv \int_0^{\eta} d\eta' c_s(\eta')$$

Coordinate distance travelled by a sound wave since $\eta = 0$

- Suppose baryons are negligible: R = 0.
- Time evolution for a particular k mode \rightarrow acoustic oscillations.

- Suppose baryons are negligible: R = 0.
- Time evolution for a particular k mode \rightarrow acoustic oscillations.

• **Spectrum** at photon decoupling:

 Position of 1st peak corresponds to the k mode that has completed exactly one compression at photon decoupling.

• Now put the baryons back in, i.e., $R \neq 0$.

 The presence of baryons offsets the midpoint of oscillations for the effective monopole, reduces the sound horizon, and alters the oscillation amplitudes (monopole and dipole).

Physical reason:

 A reduced sound speed due to baryon inertia leads to less pressure resistance → the photons are compressed more and become hotter.

Spectrum at decoupling:

Odd and even peaks now have different heights.

Height ratio depends on the baryon-to-photon ratio *R*.

• Using time-dependent Φ and Ψ changes the peak heights and positions a little, but the essential features remain.

6.3 Subhorizon @ decoupling: diffusion damping...

OR Silk damping

- In reality, the motion of the photons and the baryons cannot be exactly identical.
 - Photons random walk between Thomson scattering with electrons → diffusion.
 - Diffusion washes out temperature perturbations on scales smaller than the diffusion length:

$$\begin{split} \lambda_D &= \sqrt{N_{\text{scatter}}} \, \lambda_{\text{MFP}} & \blacktriangleleft \text{Photon mean free path} \\ &\simeq \frac{1}{\sqrt{n_e \, \sigma_T \, H}} \end{split}$$

~ a few Mpc at decoupling

6.3 Subhorizon @ decoupling: diffusion damping...

OR Silk damping

• In our Fourier analysis, diffusion damping means an exponential suppression of temperature fluctuations on at $k > k_D$.

$$\Theta_0^{(S)}(k,\eta)$$
, $\Theta_1^{(S)}(k,\eta) \sim \exp(-k^2/k_D^2) \times \text{oscillations}$

Diffusion scale:

(16/15) if including polarisation effects

$$\frac{1}{k_D^2(\eta)} = \int_0^{\eta} \frac{d\eta'}{a(\eta')\bar{n}_e \sigma_T} \left[\frac{R^2 + (4/5)(1+R)}{6(1+R)^2} \right]$$

- Obtained by keeping $\Theta^{(S)}_{2}$ in the photon Boltzmann hierarchy in this approximate treatment.

- After photon decoupling at T ~ 0.25 eV (z ~ 1100), the universe becomes transparent to photons → photons free-stream.
- To understand the effect of free-streaming on the photon perturbations today $(\eta = \eta_0)$, go back to the Boltzmann equation for photons:

$$\partial_{\eta} \Theta^{(S)} + i k \mu \Theta^{(S)} = -i k \mu \Psi + \dot{\Phi} + \dot{\kappa} \left[\Theta_{0}^{(S)} - \Theta^{(S)} - \frac{1}{2} P_{2}(\mu) \Theta_{2}^{(S)} + i k \mu v_{b}^{(S)} \right]$$

• Formal solution in the $\eta_0 \to \infty$ limit:

$$\Theta^{(S)}(k,\mu,\eta) = \int_{0}^{\eta_{0}} d\eta' \tilde{S}(k,\mu,\eta) e^{ik\mu(\eta'-\eta_{0})+\kappa(\eta')}$$

Decompose in terms of Legendre polynomial:

$$\Theta_{\ell}^{(S)}(k,\eta_0) = \int_0^{\eta_0} d\eta \, S(k,\eta) j_{\ell}[k(\eta_0 - \eta)]$$

Spherical Bessel functions

Source function:

$$S(k, \eta) \equiv g(\eta) [\Theta_0^{(S)} + \Psi] - \frac{d}{d\eta} [g(\eta) v_b^{(S)}]$$

$$+ e^{\kappa(\eta)} [\dot{\Psi} + \dot{\Phi}] + \frac{1}{4} \left(\frac{3}{k^2} \frac{d^2}{d\eta^2} + 1 \right) [g(\eta) \Theta_2^{(S)}]$$

$$Visibility function $g(\eta) \equiv \dot{\kappa} e^{\kappa(\eta)}$$$

Visibility function:

$$g(\eta) \equiv \dot{\kappa} e^{\kappa(\eta)}$$

Normalisation:

$$\int_{0}^{\eta_{0}} d\eta' g(\eta') = 1$$

 \rightarrow The visibility function is the **probability** a photon last-scattered at time η .

 \rightarrow $g(\eta)$ peaks at decoupling (the last scattering surface)

Now we can approximate the **source function**:

- **1**. $g(\eta)$ peaks at $\eta = \eta_* \rightarrow \text{set } g(\eta) = \delta_p(\eta \eta^*)$.
- **2**. $\Theta^{(S)}$, (η_*) is not generated in a great amount at decoupling compared with $\Theta^{(S)}_{0}(\eta_{*})$, $\Theta^{(S)}_{1}(\eta_{*}) \rightarrow \text{set } \Theta^{(S)}_{2}(\eta_{*}) = 0$.
- **3**. Apply the tightly-coupled limit at $\eta = \eta_* \to \text{set } v_b^{(S)}(\eta_*) = -(3/k) \Theta^{(S)}(\eta_*)$.

Approximate solution:

$$\Theta_{\ell}^{(S)}(k,\eta_{0}) \simeq \left[\Theta_{0}^{(S)}(k,\eta_{*}) + \Psi_{0}^{(S)}(k,\eta_{*})\right] j_{\ell}[k(\eta_{0} - \eta_{*})]
- \frac{3}{k}\Theta_{1}^{(S)}(k,\eta_{*}) \frac{d}{d\eta} j_{\ell}[k(\eta_{0} - \eta_{*})]
+ \int_{0}^{\eta_{0}} d\eta e^{\kappa(\eta)}[\dot{\Psi}(k,\eta) + \dot{\Phi}(k,\eta)] j_{\ell}[k(\eta_{0} - \eta)]$$

- Term 1 & term 2: Monopole and dipole at decoupling are primarily responsible for the photon temperature fluctuations observed today.
 - Acoustic oscillations in $\Theta^{(S)}_{0}$ and $\Theta^{(S)}_{1}$ are "spread" to higher multipoles by free-streaming according to the **spherical Bessel functions**.

Spherical Bessel functions

- $j_{\ell}(x)$ peaks at $x \sim \ell$ (not exactly though).
 - $\rightarrow \Theta_{\ell}(\eta_0)$ gets most contribution from k modes satisfying

$$k \sim \frac{\ell}{\eta_0 - \eta_*}$$

 \rightarrow We expect the 1st Θ_{ℓ} peak to occur today at

$$\ell_{p} \sim k_{p} (\eta_{0} - \eta_{*}) \sim \frac{\pi (\eta_{0} - \eta_{*})}{r_{s} (\eta_{*})}$$

From section 6.3

Approximate solution:

$$\Theta_{\ell}^{(S)}(k,\eta_{0}) \simeq \left[\Theta_{0}^{(S)}(k,\eta_{*}) + \Psi_{0}^{(S)}(k,\eta_{*})\right] j_{\ell}[k(\eta_{0} - \eta_{*})]
- \frac{3}{k}\Theta_{1}^{(S)}(k,\eta_{*}) \frac{d}{d\eta} j_{\ell}[k(\eta_{0} - \eta_{*})]
+ \int_{0}^{\eta_{0}} d\eta e^{\kappa(\eta)} \left[\dot{\Psi}(k,\eta) + \dot{\Phi}(k,\eta)\right] j_{\ell}[k(\eta_{0} - \eta)]$$

- Term3: only present if metric perturbations are time-dependent → Integrated Sachs-Wolfe effect
 - Important when $|\kappa| \ll 1$ (i.e., after decoupling)

• Integrated Sachs-Wolfe (ISW) effect: except deep inside matter domination, subhorizon metric perturbations Φ and Ψ decay.

• Photons suffer less gravitational redshift than in the case of constant Φ and $\Psi \rightarrow$ Larger observed temperature fluctuations.

- There are two ISW effects.
- Early ISW effect: photon decoupling occurs quite close to the transition from radiation to matter domination.
 - Residual radiation causes the metric perturbations to decay.
 - Affects most strongly those k modes crossing the horizon at decoupling.
 - Expect strongest contributions close to the first acoustic peak.
- Late ISW effect: the transition from matter domination to dark energy domination (i.e., now) also induces metric perturbation decay.
 - Expect contributions on scales close to the present-day horizon.

6.5 Anisotropy power spectrum...

Recall the photon temperature field is parameterised as:

$$T_{\gamma}(x^{i}, n^{i}, \eta) = \overline{T}_{\gamma}(\eta)[1 + \Theta(x^{i}, n^{i}, \eta)]$$

Direction of 3-momentum

 We can only observe photons here and now → observed temperature fluctuations on a 2D spherical map can be decomposed in terms of spherical harmonics:

$$\Theta(x^{i}, n^{i}\eta_{0}) = \sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{m=\ell} a_{\ell m}(x^{i}, \eta_{0}) Y_{\ell m}(n^{i})$$

$$a_{\ell m}(x^{i}, \eta_{0}) = \int d\Omega Y_{\ell m}^{*}(n^{i}) \Theta(x^{i}, n^{i}, \eta_{0})$$

Fluctuation power spectrum

$$> \langle a_{\ell m} a_{\ell' m'}^* \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}$$

6.5 Anisotropy power spectrum...

- How to get C_e from theory?
- First rewrite $a_{\ell m}(x, \eta_0)$ in terms of $\Theta_{\ell}(k, \eta_0)$:

$$a_{\ell m}(x^{i}, \eta_{0}) = \int d\Omega Y_{\ell m}^{*}(n^{i}) \int \frac{d^{3}k}{(2\pi)^{3}} e^{ik^{i}x_{i}} \times \sum_{\ell=0}^{\infty} (-i)^{\ell} (2\ell+1) P_{\ell}(k^{i}n_{i}/k) \Theta_{\ell}(k, \eta_{0})$$

$$\langle a_{\ell m} a_{\ell' m'}^* \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}$$

$$C_{\ell} = \frac{2}{\pi} \int dk \, k^2 |\Theta_{\ell}(k, \eta_0)|^2$$

6.5 Anisotropy power spectrum...

6.5 Anisotropy power spectrum...

- Why plot $\ell(\ell+1)C/2\pi$?
- Suppose the effective monopole at decoupling is given by $[\Theta^{(S)}_0 + \Psi](k, \eta_*) = \Phi(k, \eta_*)/3 = (3/10)\Phi_n(k)$ (cf modes outside horizon up to decoupling).

$$C_{\ell} = \frac{9}{100} \frac{k_0^3 P_{\Phi_p}(k_0)}{2\pi^2} \left[4\pi \int_0^{k \eta_0 \to \infty} dx \, x^{-1} \, j_{\ell}^2(x) \right]$$
Dimensionless power spectrum from inflation at the pivot scale
$$\frac{2\pi}{\ell(\ell+1)} \quad \text{Assuming a scale-invariant primordial power spectrum } n_S = 1$$

 \rightarrow A constant $\ell(\ell+1)C_{\ell}/2\pi$ corresponds to a white-noise spectrum.

6.5 Anisotropy power spectrum: low multipoles...

- A more or less flat $\ell(\ell+1)C_{\ell}/2\pi$ is in fact what we expect to see at **low \ell** multipoles, where most contributions come from those k modes that were superhorizon at photon decoupling.
 - → The Sachs-Wolfe plateau.

• A more general expression for an arbitrary scalar spectral index n_s :

$$C_{\ell} = \frac{9}{100} \frac{P_{\Phi_{p}}(k_{0})}{2\pi(\eta_{0} - \eta_{*})^{n_{s}-1}} \left(\frac{k_{0}}{2}\right)^{4-n_{s}} \frac{\Gamma(\ell + n_{s}/2 - 1/2)\Gamma(3 - n_{s})}{\Gamma(\ell + 5/2 - n_{s}/2)\Gamma^{2}(2 - n_{s}/2)}$$

6.5 Anisotropy power spectrum: high multipoles...

Naïve projection

$$[\Theta_0^{(S)} + \Psi](k = \ell/(\eta_0 - \eta_*), \eta_*)$$

Proper treatment of **free-streaming** shifts peaks a little from their naïvely expected positions.

$$\ell_{p} \sim \frac{\pi \left(\eta_{0} - \eta_{*}\right)}{r_{s}}$$
 From

From section 6.5

$$\begin{split} \Theta_{\ell}^{(S)}(k,\eta_{0}) &\simeq \\ & \left[\Theta_{0}^{(S)}(k,\eta_{*}) + \Psi_{0}^{(S)}(k,\eta_{*})\right] j_{\ell}[k(\eta_{0} - \eta_{*})] \\ & - \frac{3}{k} \Theta_{1}^{(S)}(k,\eta_{*}) \frac{d}{d\eta} j_{\ell}[k(\eta_{0} - \eta_{*})] \\ & + \int_{0}^{\eta_{0}} d\eta e^{\kappa(\eta)} [\dot{\Psi}(k,\eta) + \dot{\Phi}(k,\eta)] j_{\ell}[k(\eta_{0} - \eta)] \end{split}$$

6.5 Anisotropy power spectrum: high multipoles...

Monopole and dipole add incoherently (because of property of spherical Bessel function); adding dipole makes the troughs less prominent.

$$\begin{split} \Theta_{\ell}^{(S)}(k,\eta_{0}) &\simeq \\ & \left[\Theta_{0}^{(S)}(k,\eta_{*}) + \Psi_{0}^{(S)}(k,\eta_{*})\right] j_{\ell}[k(\eta_{0} - \eta_{*})] \\ & - \frac{3}{k} \Theta_{1}^{(S)}(k,\eta_{*}) \frac{d}{d\eta} j_{\ell}[k(\eta_{0} - \eta_{*})] \\ & + \int_{0}^{\eta_{0}} d\eta e^{\kappa(\eta)} [\dot{\Psi}(k,\eta) + \dot{\Phi}(k,\eta)] j_{\ell}[k(\eta_{0} - \eta)] \end{split}$$

6.5 Anisotropy power spectrum: high multipoles...

Early ISW effect contributes adds in phase with the monopole

$$\begin{split} \Theta_{\ell}^{(S)}(k, \eta_{0}) &\simeq \\ & [\Theta_{0}^{(S)}(k, \eta_{*}) + \Psi_{0}^{(S)}(k, \eta_{*})] j_{\ell}[k(\eta_{0} - \eta_{*})] \\ & - \frac{3}{k} \Theta_{1}^{(S)}(k, \eta_{*}) \frac{d}{d \eta} j_{\ell}[k(\eta_{0} - \eta_{*})] \\ & + \int_{0}^{\eta_{0}} d \eta e^{\kappa(\eta)} [\dot{\Psi}(k, \eta) + \dot{\Phi}(k, \eta)] j_{\ell}[k(\eta_{0} - \eta)] \end{split}$$

7. Cosmological parameters from CMB temperature anisotropies...

7.1 Cosmological parameters...

- Some standard parameters to constrain...
 - Matter density: $\Omega_m h^2$
 - Baryon density: $\Omega_{b}h^{2}$
 - Hubble parameter, spatial curvature, dark energy: $h, \Omega_{\!\scriptscriptstyle K}, \Omega_{\!\scriptscriptstyle \Lambda}$
 - Inflation parameters: scalar fluctuation amplitude A_s , spectral index n_s
- The CMB temperature anisotropies do not measure these parameters per se, rather some combination thereof.

7.2 CMB anisotropies measure z equality...

- The early ISW effect enhances the first peak because of the timedependence of the metric perturbations when transiting from RD to MD.
 - The ratio of the 1st peak to the Sachs-Wolfe plateau, or of the 1st peak to the 3rd peak can establish the early ISW effect.
 - In standard ΛCDM, the only parameter controlling this transition is the time of matter-radiation equality.

$$1 + z_{eq} = \frac{\Omega_m h^2}{\Omega_{\gamma} h^2 + \Omega_{\nu} h^2} \simeq \frac{\Omega_m h^2}{\Omega_{\gamma} h^2} \frac{1}{1 + 0.2271 N_{\nu}}$$

$$\Omega_{\gamma} h^2 = 2.47 \times 10^{-5}$$

• If we assume $N_v = 3$ massless neutrinos, then this constitutes a measurement of $\Omega_m h^2$; no conclusions yet if N_v is not known.

7.3 CMB anisotropies measure baryon-photon ratio...

 Odd to even acoustic peak ratios are determined by

$$R \equiv \frac{3}{4} \frac{\overline{\rho}_b}{\overline{\rho}_{\gamma}} = \frac{3}{4} \frac{\Omega_b h^2}{\Omega_{\gamma} h^2} a$$

- Since $\Omega_{\gamma}h^2$ is known, we have a measurement of $\Omega_{b}h^2$.
- Probably the most robust (i.e. independent of cosmological model) parameter measurement from CMB.

7.4 CMB anisotropies measure angular sound horizon...

Position of the 1st acoustic peak is given approximately by

$$\ell_{\rm p} \sim \frac{\pi \left(\eta_0 - \eta_{\star}\right)}{r \left(\eta_{\star}\right)} \qquad \begin{array}{c} \text{Comoving distance to} \\ \text{the last scattering surface} \\ \eta_0 - \eta_{\star} = \chi \left(\eta_{\star}\right) \end{array}$$

Sound horizon

at decoupling

If we had allowed for spatial curvature:

$$\chi(\eta_*) \rightarrow \frac{\sin \chi(\eta_*)}{\sinh \chi(\eta_*)}$$
 $K = +1$
 $K = -1$

A more general expression for the 1st peak position:

Angular sound horizon
$$\theta_s \equiv \frac{\pi}{\ell_p} = \frac{a(\eta_*)r_s(\eta_*)}{d_A(\eta_*)}$$
Angular diameter distance to the last scattering surface

to the last scattering surface

7.4 CMB anisotropies measure angular sound horizon...

• For fixed z_{eq} , $\Omega_b h^2$, and $a(\eta_*)$, the main parameter dependence of θ_s in **flat ACDM** is:

$$heta_{s} \propto rac{(\Omega_{m} h^{2})^{-1/2}}{\int\limits_{a_{n}}^{1} rac{d \, a}{a^{2} \sqrt{\Omega_{m} h^{2} a^{-3} + (h^{2} - \Omega_{m} h^{2})}}$$

- If $\Omega_m h^2$ is known, then the angular sound horizon provides a measurement of the Hubble parameter h.
- If $\Omega_m h^2$ is not known (e.g., because we do not know the exact radiation content), then $\Omega_m h^2$ and h are exactly degenerate parameters.
- More degeneracies if the dark energy has a nontrivial equation of state.

7.5 CMB anisotropies measure the damping scale...

Only possible with recent measurements from ACT and SPT.

7.5 CMB anisotropies measure the damping scale...

• Angular damping scale (with z_{eq} , $\Omega_b h^2$ and $a(\eta_*)$ fixed):

$$\theta_{D} \equiv \frac{r_{D}(\eta_{*})}{d_{A}(\eta_{*})} \propto \frac{(\Omega_{m}h^{2})^{-1/4}}{\int_{a_{\eta_{*}}}^{1} \frac{da}{a^{2}\sqrt{\Omega_{m}h^{2}a^{-3} + (h^{2} - \Omega_{m}h^{2})}} \qquad r_{D}(\eta) \equiv \frac{1}{k_{D}(\eta)}$$
From section 6.4

Diffusion damping

$$r_D(\eta) \equiv \frac{1}{k_D(\eta)}$$

Combine with measurement of angular sound horizon:

$$\frac{\theta_D}{\theta_s} = \frac{r_D(\eta_*)}{r_s(\eta_*)} \propto (\Omega_m h^2)^{1/4}$$

→ A measurement of the matter density that is independent of the assumptions about spatial curvature, dark energy, etc. (because the angular diameter distance has now factored out).

7.5 CMB anisotropies measure the damping scale...

 Measurements of the CMB damping tail by ACT and SPT seem to suggest that the number of neutrino species is larger than 3!

7.6 Section summary...

- The CMB temperature anisotropies are sensitive to:
 - The redshift of matter-radiation equality (1st to 3rd peak heights, 1st peak height to Sachs-Wolfe plateau).
 - The baryon-to-photon ratio (odd to even peak heights)
 - The angular sound horizon (peak positions)
 - The angular damping scale (damping tail)
- Combining these measurements, it is possible to constrain the underlying cosmological model parameters.
- Beware of parameter degeneracies!