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4. Initial conditions...



  

● We observe subhorizon scales today.  But all scales must have been 
superhorizon deep in the radiation era (since H  decreases with time). 

4.1 From superhorizon to subhorizon fluctuations...
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● What are the initial superhorizon perturbations?

● Consider the  scalar Boltzmann equations in the k << H   limit:

● There are two types of solutions:

– Adiabatic perturbations:

– Isocurvature perturbations:

4.1 From superhorizon to subhorizon fluctuations...

δ̇γ−4 Φ̇≃0
δ̇ν−4 Φ̇≃0

δb=δc=
3
4
δν=

3
4
δγ

δ̇c−3Φ̇≃0
δ̇b−3 Φ̇≃0
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δb ,c=
3
4
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● For ordinary particles:

– i.e., local ratio of particle number densities = global ratio 

● A necessary consequence of single-field inflation: If all perturbations 
come from the same source, they must be the same.

4.2 Adiabatic initial conditions...

δb=δc=
3
4
δν=

3
4
δγ

nα( x)
nγ( x)

≡ n̄α

n̄γ
, α=b ,c ,ν



  

● For ordinary particles:

– i.e., local ratio of particle number densities = global ratio 

● A necessary consequence of single-field inflation: If all perturbations 
come from the same source, they must be the same.

● If different sources (e.g., multi-field inflation, curvaton), a mixture of 
adiabatic and isocurvature perturbations is possible, but... 

– … if equilibrium is established afterwards for all interactions, the 
particle number densities must obey either FD or BE statistics 
locally → local ratio = global ratio

4.2 Adiabatic initial conditions...

δb=δc=
3
4
δν=

3
4
δγ

nα( x)
nγ( x)

≡ n̄α

n̄γ
, α=b ,c ,ν



  

● Assuming adiabatic perturbations, we can relate the fluid perturbations to 
the metric perturbations in the superhorizon limit deep in RD:

● Combine into a 2nd order DE:

4.2 Adiabatic initial conditions...

3H (Φ̇+H Φ)≃−16πG a2(ρ̄γ+ρ̄ν)Θ0
(S )

ηΦ̈+4Φ̇=0
Φ(k≪H , η≪ηeq)=time const.≡Φp (k )

Θ0
(S )(k≪H , η≪ηeq)=−Φp(k )/2

δ̇γ−4 Φ̇=4Θ̇0
(S )−4 Φ̇≃0Boltzmann 

equation

Einstein 
equation

Φ≃Ψ
Assuming

We will be using this trick
many more times...

Photon temperature
monopole fluctuation



  

● “Primordial” superhorizon fluid perturbations:

● But what is Φ
p
(k)???  INFLATION

4.2 Adiabatic initial conditions...

δb(k )=δc (k )=
3
4
δν(k)=

3
4
δγ(k )=−3

2
Φp(k )

vb
(S )(k )=v c

(S)(k )=vν
(S )(k )=vγ

(S )(k )=− 1
2H

Φp (k )



  

● Inflation = a scalar-field driven phase of accelerating expansion, before 
the onset of radiation domination.

● Action for a scalar field φ(x, η):

● Stress-energy tensor:

4.3 Some inflation basics...

S=∫d 4 x√−g L =∫ d 4 x √−g [ 1
2
∂μϕ∂

νϕ+V (ϕ)]

T μν=∂μϕ∂νϕ−gμ νL By definition

T μν=2√−g δ S
δ gμν



  

● Split the field value into a homogeneous and a perturbed part:

● Likewise for the stress-energy tensor:

● The homogeneous part is given by

● Equation of motion (homogeneous part):

4.3 Some inflation basics...

−T̄ 0
0 = 1

2 a2 (d ϕ̄
d η )

2

+V ( ϕ̄)≡ρ̄ϕ , T̄ j
i =[ 1

2 a2 (d ϕ̄
d η )

2

−V ( ϕ̄)]δ j
i ≡ P̄ϕ

ϕ( xi , η)=ϕ̄(η)+δϕ( xi , η)

T μν=T̄ μν+δTμ ν

Energy density Pressure

¨̄ϕ+2 H ˙̄ϕ+a2 ∂V
∂η

=0



  

● To get a phase of accelerated expansion from slow-roll inflation: 

– Potential energy should dominate over kinetic energy.
– Scalar field should dominate the energy density of the universe. 

4.3 Some inflation basics...

● Slow-roll parameters:

● When ε → 1, inflation ends.  
Energy in φ is somehow turned 
into a thermal bath of particles 
(“reheating”) → RD begins.

ϵ1≡
mpl

2

16π (V ,ϕ

V )
2

= 4π
mpl

2 ( ˙̄ϕ
H )

2

ϵ2≡
mpl

2

8π
V ,ϕϕ

V
ε << 1 during inflation



  

● Quantum fluctuations excited during inflation are stretched to 
cosmological scales, become frozen on superhorizon scales, and are 
imprinted on the spacetime metric.

4.4 Superhorizon fluctuations from inflation...
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● Slow-roll inflation predicts:

– Scalar perturbations (from quantum fluctuations of the inflaton)

– No vector perturbations (no vector source at linear order in a scalar 
field theory)

– Small amount of tensor perturbations (from quantum fluctuations of 
the spacetime metric itself, assuming it can be quantised)

4.4 Superhorizon fluctuations from inflation...



  

● In the spatially flat gauge (H
L 
= 0, H

T
 = 0), the equation of motion for 

field perturbations δφ (to linear order) is

● In the slow-roll limit:

● Classical solution:  

4.4 Superhorizon fluctuations... : scalar perturbations...

¨δ ϕ+2 H ˙δ ϕ+(a2 V ,ϕϕ+k 2)δ ϕ=0

δϕ(k ,η)= 1
a (η)√2 k (1− i

k (η−ηend))ei k (η−ηend)ak+c.c.

¨δ ϕ+2 H ˙δ ϕ+k 2δϕ=0

a 2V ;ϕϕ=3 ϵ2H 2≪1

ηend = a reference time;
usually chosen to be the 
end of inflation



  

● The solution again:

● Evolution history: 

1. At early times, |k (η - η
end

)| >> 1.

→ Subhorizon evolution: oscillatory

2. When |k (η - η
end

)| = 1, k mode exits the horizon.

3. When |k (η - η
end

)| << 1, superhorizon evolution:

4.4 Superhorizon fluctuations... : scalar perturbations...

δϕ(k ,η)= 1
a (η)√2 k (1− i

k (η−ηend))ei k (η−ηend)ak+c.c.

a=−H inf
−1(η−ηend)

−1

(η−ηend)
−1=−H

From Friedmann equation

δϕ→
i H inf

√2 k 3
(ak−ak

* )
Time-independent:
perturbations are “frozen”
after horizon exit



  

● Since the classical solution is that of a harmonic oscillator, we know how 
to quantise it!

● Promote δφ to an operator, and

● Vacuum expectation value:

● But has a variance: 

4.4 Superhorizon fluctuations... : scalar perturbations...

a k
* → â k

† , a k → âk

〈0 | δ̂ϕ | 0〉=0

〈0 | δ̂ϕ† ̂δ ϕ | 0〉=
H inf

2

2 k 3

Creation and annihilation 
operators

In the superhorizon limit



  

● Define the δφ power spectrum:

● For each k mode, the Hubble rate H is evaluated at horizon exit 
because it does in fact vary a little during inflation.

● Because we are doing linear PT, the power spectrum characterises 
completely the fluctuation statistics → Gaussian fluctuations!

– Odd correlators always vanish.

– Even correlators can be constructed from the power spectrum.

4.4 Superhorizon fluctuations... : scalar perturbations...

〈0 | δ̂ϕ†(k) ̂δ ϕ(k ' ) |0〉 |k=H =(2π)3δD
(3)(k−k ' )Pδϕ (k )

Pδϕ(k )=∣δϕ(k )∣
2= H 2

2 k 3 |k =H

Evaluated at horizon exit



  

● The δφ power spectrum is useful, but what we really need is a prediction 
for the Bardeen potential Φ

p
 at the start of radiation domination...

● Find Φ using the gauge-invariant curvature perturbation:

● In the spatially flat gauge: 

● Importantly, ζ is constant in time in the superhorizon limit.

– It will remain the same even as inflation ends and the universe 
enters into the radiation domination era.

4.4 Superhorizon fluctuations... : scalar perturbations...

ζ≡−Φ−i H (i B(S)+i Ḣ T+
k i k−2T i

0

ρ̄+P̄
)

ζ=−H δϕ/ ˙̄ϕ We just calculated this!



  

● Since ζ is constant outside the horizon, we can now evaluate it during 
radiation domination in the Newtonian gauge:

→ The Φ power spectrum can be now related to the δφ power spectrum:  

4.4 Superhorizon fluctuations... : scalar perturbations...

ζ=−3
2
Φp

For adiabatic initial conditions
in the superhorizon limit

PΦp
(k )=∣Φp (k )∣=

4
9 ( H

˙̄ϕ )
2

Pδϕ (k )

=1

k 3

8π
9 mpl

2

H 2

ϵ1

|k=H

Use the slow-roll
parameter



  

● Introduce the dimensionless power spectrum:

● Because H and ε
1
 are almost constant during inflation, Δ2(k) is almost 

scale-invariant → Inflation produces white noise fluctuations. 

● Small deviation from scale-invariance is expected because H2/ε is 
evaluated at horizon crossing for each k mode.

– A convenient parameterisation:

4.4 Superhorizon fluctuations... : scalar perturbations...

Δ2(k)≡
k 3 PΦp

(k )

2π 2 = 4

9πmpl
2

H 2

ϵ1

|k=H

Δ2(k)=Δ2(k 0)(k / k 0)
n S−1

scalar spectral index

k
0
 = pivot scale of 

your choosing

nS=1+2 ϵ2−6 ϵ1



  

● Scalar-field inflation models do not produce vector perturbations because 
there is no vector source.

● But, even if you manage to cook up an inflation model that produces 
vector perturbations, the perturbations will decay, unless there is a 
source to maintain them.

4.4 Superhorizon fluctuations... : vector perturbations...

( ∂
∂η

+2 H )(B(V )+Ḣ (V ))=−8πG a 2Π(V )

(B(V )+ Ḣ (V ))∝a−2 if Π(V )=0



  

● Einstein-Hilbert action:

→ Effective action for tensor perturbations (leading order):

→ This is just the action for two free scalar fields:

4.4 Superhorizon fluctuations... : tensor perturbations...

ϕ̈+2 H ϕ+k 2ϕ=0

S=S̄+δ S=− 1
16πG∫d 4 x√−( ḡ+δ g)(R̄+δ R)

δ S=− 1
2πG

∫ d 4 x
a2

2
[∂μ H (T×)∂μ H (T×)+∂μ H (T●)∂μ H (T●)]

ϕ×≡ 1

√2πG
H (T×)

ϕ●≡ 1

√2πG
H (T●)

Two polarisations

Equation of motion

We saw the same equation before for 
scalar perturbations → use the same tricks
to compute the tensor power spectrum!



  

● The tensor power spectrum:

● A convenient parameterisation:

● Tensor-to-scalar ratio:

4.4 Superhorizon fluctuations... : tensor perturbations...

PH (T)(k )=∣H (T×)(k )∣2+∣H (T●)(k )∣2
=2πG (∣ϕ×(k )∣2

+∣ϕ●(k )∣2
)

=1

k 3

2π
mpl

2 H 2 |k =H

k 3 PH (T )(k)=k 0
3 PH (T )(k 0)(k /k 0)

nT

Tensor spectrum index

nT=−2 ϵ1

r≡
PH (T )(k 0)

Pζ (k 0)
= 9

4

P H (T)(k 0)

PΦp
(k 0)

=ϵ1≪1Not much tensor 
perturbations expected...



  

● Slow-roll inflation provides a way to generate metric perturbations via 
quantum fluctuations.

– Scalar perturbations from a scalar field.

– Tensor perturbations quantum fluctuations of spacetime itself.

– No vector perturbations.

● Tensor perturbations are highly suppressed relative to scalar 
perturbations.

● Adiabatic initial conditions are a necessary consequence of single-field 
inflation, but they are also quite generic if equilibrium for all possible 
interactions is established after inflation.

4.5 Section summary...



  

5. Approximate solutions I:
matter density perturbations...



  

● To study the evolution of matter density perturbations we must solve the 
full scalar Boltzmann-Einstein system of equations.  

● Exact solutions are possible with numerically.

● Some publicly available codes:

– COSMICS: web.mit.edu/edbert/ (F77)

– CMBFast: lambda.gsfc.nasa.gov/toolbox/tb_cmbast_ov.cfm (F77)

– CAMB: camb.info (F90)

– CMBEasy: www.thphys.uni-heidelberg.de/~robbers/cmbeasy/ (C++)

– CLASS: class-code.net (C)

5.1 Downloadable codes...

Maintained

Maintained

http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy


  

● Trajectory of a k mode: Superhorizon → horizon crossing → subhorizon

● Crucial point: When? During matter or radiation domination? 

5.2 Three stages of evolution...
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● Trajectory of a k mode: Superhorizon → horizon crossing → subhorizon

● Crucial point: When? During matter or radiation domination? 

5.2 Three stages of evolution...
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5.2 Three stages of evolution...

log(k)

aeq

k eq

k = Hk < H
k = H

k > H
Subhorizon

Superhorizon

Matter dominationRadiation domination

log(a)

k eq=H (aeq)

k eq=√2Ωm H 0
2/ aeq

≃0.073Ωm h h Mpc−1

● The (comoving Hubble length)-1 at matter-radiation equality:

● Assuming radiation 
content = photons + 3 
massless neutrinos:



  

● Suppose the universe contains only photons and cold dark matter.

● Boltzmann equations:

– CDM:

– Photons

● Einstein equation assuming Ψ = Φ:

5.3 Simplified equations...

δ̇c−k 2 vc
(S )−3 Φ̇=0 v̇c

(S )+H vc
(S)+Ψ=0

δ̇γ−
4
3

k2 vγ
(S )−4 Φ̇=0 v̇γ

(S )+1
4
δγ+Ψ=0

k 2Φ+3H (Φ̇+H Φ)=−4πG a2(ρ̄c δc+ρ̄γδγ)

k 2Φ=−4πG a2[ρ̄cδc+ρ̄γδγ−H (3 ρ̄c vc
(S )+4 ρ̄γ vγ

(S))]
OR

Truncated in the 
tightly-coupled limit



  

● Trajectory of a k mode: Superhorizon → horizon crossing → subhorizon

● Crucial point: When? During matter or radiation domination? 

5.4 Superhorizon evolution...
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● In the superhorizon limit (k <<H    ), the relevant equations are:

● Combine into a 2nd order DE for Φ:

5.4 Superhorizon evolution...

δ̇γ−4 Φ̇≃0

3H (Φ̇+H Φ)≃−4πG a2(ρ̄c δc+ρ̄γδγ)

d 2Φ
d y 2 +

21 y 2+54 y+32
2 y( y+1)(3 y+4)

d Φ
d y

+ 1
y( y+1)(3 y+4)

Φ=0

δ̇c−3Φ̇≃0

+ adiabatic initial conditions 4δc=3δγ

y≡a /a eq



  

● The growing solution:

5.4 Superhorizon evolution...

Φ(k ,η)=
Φp (k )

10 y3 [9 y 3+2 y2−8 y+16 √1+y−16] y≡a /a eq

Radiation
domination

Matter
domination

y≪1 y≫1

Radiation domination

Matter domination

Φ is constant deep in MD or RD
but changes during transition.

Φ(k ,η)=Φp (k )

Φ(k ,η)= 9
10

Φp(k)



  

● The growing solution:

5.4 Superhorizon evolution...

Φ(k ,η)=
Φp (k )

10 y3 [9 y 3+2 y2−8 y+16 √1+y−16] y≡a /a eq

Radiation
domination

Matter
domination

y≪1 y≫1

δc=−3
2
Φ=−3

2
Φp

δc=−2Φ=−9
5
Φp

From the Einstein equation:

RD

MD



  

● Trajectory of a k mode: Superhorizon → horizon crossing → subhorizon

● Crucial point: When? During matter or radiation domination? 

5.5 Horizon crossing during matter domination...
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● During matter domination, we neglect the radiation energy density:

● Φ(k, η) is constant in time during matter domination even as a k mode 
transits from super- to subhorizon.

5.5 Horizon crossing during matter domination...

δ̇c−k 2 vc
(S )−3 Φ̇=0 v̇c

(S )+H vc
(S)+Φ=0

k 2Φ≃−4πG a2[ρ̄c δc−3H ρ̄c vc
(S )]

αΦ̈+βΦ̇=0
Combine

Φ(k≪k eq ,η)=constant in η

= 9
10

Φp(k )
From section 5.4



  

● After a k mode has crossed into the subhorizon regime (k >>H   ):

● Given: 

→ During matter domination, CDM density perturbations grow like the 
scale factor inside the horizon (optimal growth rate).

5.5 Horizon crossing during matter domination...

k 2Φ≃−4πG a2ρ̄c δc

Einstein equation in 
the subhorizon limit

δc (k≪k eq ,η)∼a (η)Φp (k )

Φ(k ,η)= 9
10

Φp(k)

ρ̄c∝a−3



  

● Trajectory of a k mode: Superhorizon → horizon crossing → subhorizon

● Crucial point: When? During matter or radiation domination? 

5.6 Horizon crossing during radiation domination...
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● When radiation dominates, we can neglect the CDM component:

● Growing solution:

5.6 Horizon crossing during radiation domination...

δ̇γ−
4
3

k 2 vγ
(S )−4 Φ̇=0 v̇γ

(S )+1
4
δγ+Ψ=0

k 2Φ≃−4πG a2[ρ̄γδγ−4 H ρ̄γ vγ
(S )]

Φ̈+ 4
ηΦ̇+ k 2

3
Φ=0

Φ(k≫k eq ,η)=3Φp(k )( sin x−x cos x

x3 ) x≡
k η
√3

Combine



  

● Growing solution:

● During radiation domination, Φ decays away as soon as the k mode 
enters the horizon.

5.6 Horizon crossing during radiation domination...

Φ(k ,η)=3Φp(k )( sin x−x cos x

x3 )
x≡

k η
√3

= 1

√3
k

H

Superhorizon Subhorizon

k≪1 /η=H k≫1 /η

During radiation 
domination



  

● We can now feed Φ(k, η) into the dark matter EoM as an external source:

● Formal solution:

● δ
c
 grows logarithmically with a when inside the horizon during RD.

● Physical reason: Radiation pressure attenuates the growth of δ
c
. 

5.6 Horizon crossing during radiation domination...

δ̈c+
1
η δ̇c=k2Φp S (k η)

δc (k ,η)
Φp(k )

=−3
2
−[∫

0

x

d x ' S (x ' ) x ' ln( x ' )]+[∫
0

x

d x ' S ( x' ) x ' ] ln (k η)

S (x)=3
d 2 Φ̃
d x2 +

3
x

d Φ̃
d x

−Φ̃ Φ̃≡ Φ
Φp

δc (k η≫1)≃AΦp (k ) ln (B k η)

~ constant at x>>1 ~ constant at x>>1

a∝η
during RD



  

● Trajectory of a k mode: Superhorizon → horizon crossing → subhorizon

● Crucial point: When? During matter or radiation domination? 

5.7 Subhorizon evolution...
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● During radiation domination and after horizon crossing:

→ Matter perturbations will grow to be larger than photon perturbations 
even during radiation domination.

→ Ignoring photon perturbations, the relevant equations are:

5.7 Subhorizon evolution...

δc (k ,η)≃AΦp(k ) ln(B k η)

δ̇c−k 2 vc
(S )−3 Φ̇=0 v̇c

(S )+H vc
(S)+Φ=0

δγ(k ,η)∼oscillatory

k 2Φ≃−4πG a2ρ̄c δc

From section 5.6



  

● Combine into a 2nd order DE for δ
c
:

● Formal solution:

● What are the constants C
G
(k) and C

D
(k)?  Initial conditions are set by the 

logarithmic growth solution from section 5.6.  

5.7 Subhorizon evolution...

d 2δc

d y2 +
2+3 y

2 y( y+1)
d δc

d y
− 3

2 y( y+1)
δc=0

δc (k ,η)=CG (k )G (η)+C D (k )D(η)

G(η)=y+2 /3

D(η)=( y+2 /3) ln (√1+y+1

√1−y−1 )−2√1+ y

y≡a /a eq

Growing solution

Decaying solution



  

● Match logarithmic growth solution to the new solution at some time η
m
 

deep in radiation domination (but k should be subhorizon):

● Outcome:

5.7 Subhorizon evolution...

AΦp(k) ln (B k ηm)=CG (k )G (ηm)+C D(k )D (ηm)

δc (k ,η)
Φp(k )

=C̃G (ln k )G (η)+C̃ D( ln k)D (η)

→ C̃G (ln k )a /aeq , η≫ηeq

Φ(k≫k eq ,η≫ηeq)∼
C̃G (ln k )

k 2 Φp(k )

Constants depending
logarithmically on k

Matter domination

Einstein 
equation

+ first 
derivative



  

● Pick a time η deep in matter domination.  

– The relevant solutions are:

5.8 Putting it all together: the transfer function...

Φ(k≪k eq ,η)= 9
10

Φp(k) Φ(k≫k eq ,η)∼
C̃G (ln k )

k 2 Φp (k )

k eq

lo
g 

[Φ
(k

, η
)/

Φ
p(

k)
]

log k

Transfer function

T (k , η)≡Φ(k ,η)/Φp(k)
Interpolate



  

● At early times, baryons and photons form a tightly-coupled fluid.

– Like photons, baryon density perturbations oscillate around 0.

 
● Replacing some of CDM with baryons means we have less total matter 

perturbations for those k modes inside the horizon before decoupling.

● Define:

● Effective EoM for subhorizon evolution:

5.9 What if we include baryons...

δ̇m−k 2 vm
(S )−3 Φ̇=0 v̇m

(S )+H vm
(S)+Φ=0

k 2Φ≃−4πG a2ρ̄m(1− f b)δm

δm≡(1− f b)δc+ f bδb f b≡
Ωb

Ωb+Ωc

While baryons & photons are coupled

Total matter density perturbations

Baryon fraction



  

● Baryons decouple from photons at during early MD.

→ Reduced amplitude for k modes crossing horizon while baryons 
are coupled to photons.

● Scale k
b
 at which suppression begins fixed by recombination physics.

● Amount of suppression at k >> k
eq
 depends on the baryon fraction f

b
.

5.9 What if we include baryons: the transfer function...

k eq

lo
g 

[Φ
(k

, η
)/

Φ
p(

k)
]

log k

CDM only

CDM+baryons

k b



  

● Like baryons, neutrinos also do not cluster on small scales, but for a 
different reason.

– Neutrinos have too much thermal motion to cluster efficiently, 
even today.

● Neutrino thermal speed at low redshift:

– Compare with velocity dispersion of a galaxy (~ O(100) km s-1) 
and dwarf galaxy (~ O(10) km s-1).

● Massive neutrinos must make up some of the dark matter in the 
universe, but cannot be the dominant dark matter component .

5.10 What if we include massive neutrinos...

cν≃81(1+z)( eV
mν

) km s−1



  

● If some CDM is replaced with neutrinos:

– Reduced fluctuation amplitude for those k modes crossing the 
horizon while the neutrinos are still relativistic.

● Scale at which suppression begins is fixed by the neutrino mass.

● Amount of suppression depends on the neutrino fraction:

5.10 What if we include massive neutrinos...

k eq

lo
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]

log k

CDM only

CDM+ 1 massive neutrino
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mν
f ν

f ν≡
Ων
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Ωνh2=∑ mν

94 eV
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