Track Jets in VBF H \rightarrow WW

Sandra Horvat, Steffen Kaiser, Oliver Kortner

ATLAS-MPI Meeting February 18, 2008

SM Higgs Production

• $\sigma(VBF) \sim 0.2 \sigma(gluon fusion)$ at low masses ~ σ (gluon fusion) for large M_H • HW, HZ, Htt only relevant for small M_H

600

700

800

900

M_H (GeV)

1000

VBF ... Vector Boson Fusion

SM Higgs Decays

- M_H < 114.4 GeV (at 95% CL) excluded by LEP
- For $M_H < 2M_W$:
 - \circ H \rightarrow bb, $\rightarrow \tau \tau$ dominant
 - $H \rightarrow \gamma \gamma$ small but also relevant (high precission γ reconstruction)
- For $M_H > 2M_W$:
 - $\circ \ H \rightarrow WW, \rightarrow ZZ \ dominant$

Higgs Production via VBF: $qq \rightarrow qqH$

Signature:

- 2 forward jets with large rapidity gap
- Suppressed central-jet activity

 \rightarrow Only Higgs-decay products in central part of the detector

Motivation

Motivation:

- Central-jet veto (cjv) crucial in VBF channels
- Additional jets from pile-up events can spoil the cjv efficiency
- → Vertex information from tracks allows to separate particles from different inelastic pp collisions

<u>Strategy</u>: (to avoid central jets created by pile-up)

- 1. Select vertex with highest E_T sum of tracks emerging from it
- 2. Reconstruct jets based on tracks emerging from this vertex

Data Samples

• 5322: VBF $H \rightarrow WW \rightarrow II$, m_H=170 GeV (Pythia) \circ w/o pile-up: 15k \circ w/ pile-up: 12k

- 5200: tt (MC@NLO)
 - w/o pile-up: 596k
 w/ pile-up: 509k

Only release 12.0.6 samples used for these studies

Track-Jet Reconstruction

Track Jets:

- Cone-4 algorithm performed on TrackParticleCandidate's emerging from highest E_T vertex
- Skip tracks which can be matched to isolated leptons coming from the same vertex (loose electrons and staco muons with track match)
- Isolation: ΣE_T (tracks from same vertex) in cone(0.01 < ΔR < 0.2) < 5 GeV

Truth Track Jets:

- Truth vertices with a distance of < 165 μm confined to one vertex (impact parameter resolution of single track is 55 μm)
- No vertex finding algorithm
- Isolation: E_T cut is chosen such to obtain same cut efficiencies as for reconstructed leptons

Vertex-Selection Performance

Vertex-Selection Performance

- Truth vertex selection works fine on $H{\rightarrow}WW$
- Does not work well on more complicated topologies such as $t\bar{t}$
- \rightarrow Current approach too simple
- \rightarrow Vertex reconstruction algorithm should be run on truth particles

Track-Jet Performance

Efficiency = $\frac{\text{nb of truth jets with matched reco jet in } \Delta R = 0.4}{\text{total nb of truth jets}}$

Fakerate = $\frac{\text{nb of reco jets w/o matched truth jet in } \Delta R = 0.4}{\text{total nb of reco jets}}$

Due to a bug in the 12.0.x pile-up samples concerning the truth information no values are given for standard jets.

Track-Jet Efficiency

	w/o pile-up	w/ pile-up
H→WW	89.8 <mark>90.8</mark>	88.3
tī	88.6 <mark>91.7</mark>	87.8
		Tradi lata

— Track Jets
— Std Jets (|η|<2.5)

Track-Jet Fake-Rate

- Track-jet efficiency and fake rate independent of pile-up
- Track-jet fake-rate rather high on $\ensuremath{t\bar{t}}$
- \rightarrow Imperfect truth vertex selection
- \rightarrow Isolation cuts of leptons for thruth track jets determined on H \rightarrow WW

Jet Multiplicity and p_T Distribution

Jet Multiplicities

- Pile-up leads to additional standard jets at low E_T (as expected)
- Number of standard jets with $E_{T,min} > 20$ GeV rather independent of pile-up
- Very good agreement of the number of track jets w/ and w/o pile-up

Event Selection

Preselection:

- Leptons e,μ: ∘ p_T > 15 GeV, |η| < 2.5
 - \circ track E_T in cone(0.01< Δ R < 0.2) < 5.0 GeV
- Electrons: track match, isEM = 0x3FF (medium)
- Jets: $\circ p_T > 20 \text{ GeV}, |\eta| < 5.0,$ $\circ \text{ overlap removal w/ 'loose' electrons (0x7) in } \Delta R = 0.4$

Event Selection:

- Trigger: \circ 1e (p_T > 25 GeV), 1m (p_T > 20 GeV), 2l (p_T > 15 GeV)
- b-jet veto: no jets with b-weight > 4 in the event (IP3D+SV1)
- Fwd Jets: $\circ 2 \text{ leading jets, } p_{T1} > 40 \text{ GeV, } p_{T2} > 20 \text{ GeV}$ $\circ \eta_1 \cdot \eta_2 < 0, |\Delta \eta_{jj}| > 3.8, M_{jj} > 550 \text{ GeV}$
- Missing $E_T > 30 \text{ GeV}$
- Central-jet veto

Due to low statistics: only cuts on jet variables are applied

p⊤ Cut

- Track jets have about 2/3 of the p_T of standard jets
- p_{T} cut on track jets has to be modified
- Choose p_T cut such that cjv efficiency for $H \rightarrow WW$ w/o pile-up is the same for standard and track jets in $|\eta| < 2.5$

 \rightarrow p_T(std jet) > 20.0 GeV, p_T(track jet) > 12.3 GeV

Central-Jet Veto

CJV - Combination

• Track jets (|η|<2.5)

• Std jets (2.5<|η|<3.2)

Fraction of events passing the cjv:

	$H \to WW$		$tar{t}$	
	no pile-up	with pile-up	no pile-up	with pile-up
std jets $(\eta < 2.5)$	72.0 ± 1.0	63.0 ± 1.2	28.6 ± 3.4	19.7 ± 3.3
track jets	72.0 ± 1.0	73.5 ± 1.1	28.6 ± 3.4	25.9 ± 3.6
std jets $(\eta < 3.2)$	65.4 ± 1.0	57.0 ± 1.2	24.0 ± 3.2	16.3 ± 3.0
combination	65.8 ± 1.0	65.9 ± 1.1	24.0 ± 3.2	23.1 ± 3.5
all jets	58.4 ± 1.1	51.8 ± 1.2	13.7 ± 2.6	10.9 ± 2.6

• Standard jet cjv sensitive to pile-up

• Track jet cjv shows only small sensitivity to pile-up

Summary and Outlook

- Central-jet veto with standard jets is sensitive to pile-up
- Vertex reconstruction allows for the separation of different inelastic pp interactions in an event
- Track jets look promising since they show small sensitivity to pile-up
- Tools have been ported to release 13 and will be included in JetRecTools (after being rewritten as SelectorTool)

ToDo-List

- Comparison of reco efficiency and fake rate with std jets in release 13
- Vertex reconstruction on truth particles
- Optimization of track-jet reconstruction (overlap removal with isolated leptons, cone size, ...)
- SelectorTool

Backup Slides

p_⊤ Ratio

- Difference of $p_T(\text{std jet})/p_T(\text{trk jet})$ of matched jets ($\Delta R=0.4$) less than 5%
- → Pile-up has rather small influence on p_T of std jets (Cone4Topo) wrt the p_T of track jets

Reco Efficiency

	Standa	rd Jets	Track Jets		
ΔR	Efficiency	Fake Rate	Efficiency	Fake Rate	
0.05	77.19 ± 0.22	24.68 ± 0.23	78.73 ± 0.28	27.66 ± 0.30	
0.10	89.14 ± 0.17	13.03 ± 0.18	86.03 ± 0.24	20.96 ± 0.27	
0.15	90.93 ± 0.15	11.29 ± 0.17	87.80 ± 0.23	19.32 ± 0.26	
0.20	91.66 ± 0.15	10.57 ± 0.16	88.74 ± 0.22	18.47 ± 0.26	
0.25	92.08 ± 0.14	10.16 ± 0.16	89.30 ± 0.21	17.95 ± 0.26	
0.30	92.26 ± 0.14	9.99 ± 0.16	89.61 ± 0.21	17.66 ± 0.25	
0.35	92.31 ± 0.14	9.94 ± 0.16	89.73 ± 0.21	17.56 ± 0.25	
0.40	92.33 ± 0.14	9.92 ± 0.16	89.77 ± 0.21	17.52 ± 0.25	
0.45	92.34 ± 0.14	9.91 ± 0.16	89.82 ± 0.21	17.47 ± 0.25	
0.50	92.35 ± 0.14	9.90 ± 0.16	89.85 ± 0.21	17.44 ± 0.25	

Higgs Decay: $H \rightarrow WW \rightarrow IvIv$

Signature:

- 2 high p_T leptons + large missing E_T
- lepton spin correlation (spin $0 \leftrightarrow 1$)
- $\rightarrow W^{+}$ and W^{-} have opposite spins
- \rightarrow leptons I[±] tend to be emitted in the same direction

- no mass peak \rightarrow transverse mass

$$M_T = \sqrt{(E_T^{\ell\ell} + E_T^{\nu\nu})^2 - (\vec{p}_T^{\ell\ell} + \vec{P_T})^2}$$

Event Selection

- Leptons: ∘ electrons/muons, p_T > 15 GeV
 ∘ opening angle between the leptons
- Fwd Jets: \circ 2 jets, p_{T1} > 40 GeV, p_{T2} > 20 GeV Tagging Jets
 - Δη between the jets
 Ieptons between the jets in η
- $Z \rightarrow \tau \tau$ veto: apply collinear approximation \rightarrow reject event if $x_1 > 0$, $x_2 > 0$ and $|M_Z - M_{\tau\tau}| < 25$ GeV
- φ Leptons η

- missing transverse energy
- central jet veto: no other jets in central region ($|\eta| < 3.2$)