

Sandra Horvat Max-Planck-Institut für Physik

Search for the neutral MSSM Higgs bosons in the channel $A/H/h \rightarrow \mu^+\mu^-$

ATLAS MPI Meeting • February 18th • MPI, Munich

Introduction

Outline (preliminary results of the CSC HG8 note):

- Signal and background processes.
- Event selection.
- Detector-related systematic uncertainties.
- Estimation of the background from the real data.
- Discovery potential.

Signal processes

Two production modes:

- Direct production, SM-equivalent: $gg \rightarrow A/H/h$.
- Associated production: $(gg, qq) \rightarrow b\bar{b}A/H/h$.

All Higgs properties determined (at tree-level) by m_A and $\tan \beta$:

- A/H degenerate in mass for $m_A > 130$ GeV (A/h for <130 GeV).
- Associated production dominant at higher masses and $\tan\beta$ -values.
- A/H-branching ratio into $\mu^+\mu^-$ increases with tan β .

$$\Rightarrow \sigma imes BR pprox$$
 (1 - 500) fb.

Background processes

Signal simulated with full simulation.

Dominant backgrounds simulated using Atlfast (\sim 70M events).

Atlfast parametrization tuned offline to reproduce the full simulation.

Atlfast tunning to the full simulation

Original Atlfast parametrization is obsolete,

due to the software modifications in the full simulation.

 \Rightarrow Corrected offline, using dedicated fully simulated datasets.

Event selection

Preselection:

two isolated muons ($\mu^+,\mu^-);\; \textit{p}_T>20$ GeV/c, $|\eta|<\!\!2.7$.

Analysis (A): no b-tagging requirement.

- Final state with 0 jets.
- Final state with 1 jet.

Analysis (B): with b-tagging requirement.

- Final state with 0 b-jets.
- Final state with ≥ 1 b-jet.

Trigger selection efficiency for the events passing all analysis cuts.

Discriminating variables

Without b-tagging: E_T^{miss} , jet multiplicity, acoplanarity = $\frac{p_{x1}^{\mu} \cdot p_{y2}^{\mu} - p_{x2}^{\mu} \cdot p_{y1}^{\mu}}{p_{T1}^{\mu} \cdot p_{T2}^{\mu}}$

With b-tagging: E_T^{miss} , b-jet multiplicity, acoplanarity, $\sum p_T^{jets}$.

Analysis results

Analysis (A): no b-tagging.

Analysis (B): with b-tagging.

Trigger selection efficiencies

Fraction of muons with $p_T > 20$ GeV/c, which have a RoI (Level-1): (acceptance holes in the feet region and at $|\eta|=0$).

• Single high-p_T muon trigger (μ 20): ~95% trigger selection.

Dataset	m _A	Level-1	High level trigger
	(GeV/c ²)		
<i>b</i> b <i>A</i> , 150 GeV/c ²	150	97.4	95.8
<i>bbA</i> , 200 GeV/c ²	200	97.2	95.0
<i>bbA</i> , 300 GeV/c ²	300	97.1	94.7
$b\bar{b}A$, 400 GeV/c ²	400	96.4	96.3
tī		97.1	95.1
bbZ		97.1	94.8

Detector related systematic uncertainties

Using the common ATLAS estimations for the detector uncertainties:

Systematic uncertainty		bbA(200)	tī	Z + b jets	Z + light jets
		$m_{\mu\mu}$ >100 GeV/c ²			
Muon resol.	$\sigma\left(\frac{1}{p_{T}}\right) = \frac{0.011}{p_{T}} \oplus 0.00017$	-1.5	0.0	1.5	1.5
Muon p_T scale	$\pm 1\%$	±2.3	±1.7	±10.0	± 11.2
Muon efficiency	$\pm 1\%$	±1.9	±1.3	±2.1	± 2.1
Jet energy resol.	$\sigma(E) = 0.45(0.63) \cdot \sqrt{E}$	-1.5	-11.7	-1.2	-1.0
Jet energy scale	$\pm 7\% (\pm 15\%)$	±1.2	±13.4	±1.9	± 5.1
b-tag efficiency	$\pm 5\%$	±3.6	±2.2	±2.7	±0.3
b-tag fake rate	±50%	±0.8	±0.0	±1.1	±45.4
Total		5.3	18.1	11.0	45.8

- Largest effect: uncertainty of the b-tagging fake rate, affects the dominant Z + light jets background.
- $t\bar{t}$ -background sensitive to the jet energy scale and resolution.
- Z-background sensitive to the muon p_T -scale (for $m_{\mu\mu} < 130 \text{ GeV/c}^2$).

Background estimation from data: e^+e^- , $e^\pm\mu^\mp$

Contrary to $\mu^+\mu^-$ final state, no signal is expected for e^+e^- or $e^\pm\mu^\mp$. Possible differences: electron efficiency/resolution, overlap with jets.

- For the comparison of $Z \rightarrow e^+e^-$ and $Z \rightarrow \mu^+\mu^-$ signatures, we reffer to ATLAS-PHYS-PUB-2006-019 (S.Gentille et al.).
- In the HG8 note, we concentrate on the $t\bar{t}$ -background:
 - ~10% accuracy after correcting for μ .vs.*e*-efficiencies (30 fb⁻¹).

Background estimation from data: $t\bar{t}$ control sample

Pure $t\bar{t}$ control sample obtained by inverting the cut on E_T^{miss} : requiring $E_T^{miss} > 60$ GeV instead of usual $E_T^{miss} < 40$ GeV.

 \Rightarrow can be used for the additional check of the $t\bar{t}$ -shape.

Signal significance (from the fit to the data)

Following function is fitted to the dimuon distribution:

$$f_{total}(p_0, p_1, p_2) = p_0 \cdot f_{background} + p_1 \cdot f_{signal}, where$$

$$f_{signal}(p_2) = \frac{1}{\sigma(p_2)\sqrt{2\pi}} \cdot exp\left(-\frac{(x-p_2)^2}{2\sigma^2}\right) \left(p_2 - Higgs \text{ mass in a given window}\right)$$

$$f_{background}(a_1, a_2, a_3) = \frac{a_1}{x} \cdot \left[\frac{1}{(x^2 - M_Z^2) + M_Z^2 \Gamma_Z^2} + a_2 \cdot exp\left(-a_3 \cdot x\right)\right].$$

$$p_2^{220} \qquad p_1^{100} \qquad p_1^{1003 \pm 0.017}$$

$$p_2^{1100} \qquad p_2^{1100} \qquad p$$

Discovery potential

Signal significance calculated using the profile likelihood method:

a) from Monte Carlo (fixed mass window, no error on background) b) from the fit (fixed mass window so far, bckg. error of $10\%/\sqrt{\mathcal{L}}$) c) = b) + systematic uncertainties

• Obtained result similar to the one obtained in the TDR.