MAGIC observations of Markarian 421

MAGIC Major Atmospheric Gamma Imaging Cerenkov Telescope

DPG Frühjahrstagung 2012 Göttingen

Burkhard Steinke, MPI für Physik, München Andrea Boller, ETH, Zürich David Paneque, MPI für Physik, München

Motivation: Markarian 421

Active Galactic Nuclei (AGN)

Illustration, credit: A. Simonnet

- One of the closest blazars to earth (400 million light years)
- Detected and observed in all wavelenghts (1992 VHE γ-ray...)
- Numerous observations since detection by various instruments

Motivation: Markarian 421

Spectral energy distribution (SED)

- Most complete SED ever collected for Mrk 421
- Extensive MWL campaign in 2009 (Jan - Jun 2009)
- Typical two peak structure
- MAGIC: 80 GeV to 5 TeV

Abdo et al., ApJ 736 (2011) 131

Additionally...

- Flux variations by more than one order of magnitude Fossati et al., ApJ 677 (2008) 906
- Occasional flux doubling times as short as 15 min Aharonian et al., A&A 393 (2002) 89

How can we improve our knowledge?

- Other wavebands: high sensitivity on short timescales
- VHE γ-ray: averaging of particularly long periods
- Since 2009: MAGIC stereo, improved quality on short timescales → day to day evolution of spectral features!

The MAGIC telescopes

MAGIC Major Atmospheric Gamma Imaging Cerenkov Telescope

- System of two IACT (Imaging Atmospheric Cherenkov telescopes)
- Each telescope: 17m diameter mirror
- Threshold $\approx 50 \text{ GeV}$
- Sensitivity ≈ 0.8% crab (50 hours, > 300 GeV)
- Energy resolution ≈ 16% (medium energies)

 16 days analysed: 08/01/2010 - 26/01/2010

MAGIC

Major Atmospheric

Gamma Imaging

Cerenkov Telescope

• Two distinct flares: Jan 14^{th} (≈ 2.7 c.u.) Jan 20^{th} (≈ 2.6 c.u.)

Day-by-day binning Each observation shows significant detection (> 5 σ)

Lightcurve Mrk 421 January 2010

 16 days analysed: 08/01/2010 - 26/01/2010

MAGIC

Major Atmospheric

Gamma Imaging

Cerenkov Telescope

• Two distinct flares: Jan 14^{th} (≈ 2.7 c.u.) Jan 20^{th} (≈ 2.6 c.u.)

Day-by-day binning Each observation shows significant detection (> 5 σ)

MAGIC Major Atmospheric Gamma Imaging Cerenkov Telescope

SED for flare F1 and adjacent periods

SEDs from 80 GeV to 5 TeV

SED for flare F2 and adjacent periods

F2 SED extends from 80 GeV to 8 TeV

MWL observations and modelling

MAGIC Major Atmospheric Gamma Imaging Cerenkov Telescope

SED for flare F1 and adjacent periods

Optical	GASP, NMS, BRT
UV	Swift/UVOT
X-ray	Swift/XRT
[Radio]	[UMRAO, OVRO, Metsähovi]

SED for flare F2 and adjacent periods

MWL observations and modelling

One-break SSC model

Emission region	9 x 10 ¹⁵ cm
Beaming	45
Magnetic field	32-42 mG
Electron number density	650-1030 cm ⁻³
Electron Lorentz factors:	
Minimum	3-6 x 10 ³
Break	1.6-2.8 x 10 ⁵
Maximum	1 x 10 ⁸
Spectral indices:	
Low energy	2.0
High energy	4.0-4.2

MWL observations and modelling

Two-break SSC model (including optical)

Emission region	2.5 x 10 ¹⁶ cm
Beaming	32-50
Magnetic field	13-40 mG
Electron number density	90-130 cm ⁻³
Electron Lorentz factors:	
Minimum	5-12 x 10 ³
Break 1	2-4 x 10 ⁴
Break 2	3-5.5 x 10 ⁵
Maximum	1 x 10 ⁸
Spectral indices:	
Low energy	1.9
Medium energy	2.55-2.75
High energy	4.0-4.4

P1 — One-break model Scenario c F1

F1a

F2

 $10^{16}~10^{18}~10^{20}~10^{22}~10^{24}~10^{26}~10^{28}~10^{14}~10^{16}~10^{18}~10^{20}~10^{22}~10^{24}~10^{26}~10^{28}~10^{24}~10^{26}~10^{28}~10^{$

10⁻¹

v Fv [erg cm⁻² s^{·1}]

10

 $v\;\text{Fv}\;[\text{erg}\;\text{cm}^2\,\text{s}^{\text{i}}]$

10⁻¹

10¹⁴

In one-break one-zone SSC model flares are mainly driven by changes in electron number density

P3

Conclusion

Thank you for your attention

wwwmagic.mppmu.mpg.de

Backup slides

Active Galactic Nuclei (AGN)

MAGIC Major Atmospheric Gamma Imaging Cerenkov Telescope

Credit: Ron Kollgaard

Continuus Spectral Energy Distribution (SED)

2 typical peaks in SED of blazars:

Origin is assumed to be from synchrotron radiation and inverse Compton up-scattering of synchrotron photons (SSC model).

Active Galactic Nuclei (AGN)

MAGIC Major Atmospheric Gamma Imaging Cerenkov Telescope

Credit: Ron Kollgaard

Continuus Spectral Energy Distribution (SED)

2 typical peaks in SED of blazars:

Origin is assumed to be from synchrotron radiation and inverse Compton up-scattering of synchrotron photons (SSC model).

Markarian (Mrk) 421

Credit: Hubble Telescope

- One of the closest blazars to earth, making it one of the brightest AGN in night sky
- 400 million light years from earth (redshift 0.03, 120 Mpc)
- Detected and observed in all wavelenghts (1992 VHE γ-ray...)
- Numerous observations since detection by various instruments

The MAGIC II camera

Hemispherical High QE PMT

7 PMT grouped in a cluster

1039 PMT in total

Imaging Air Cherenkov Technique

MAGIC

Major Atmospheric

Gamma Imaging

Cerenkov Telescope

Hadrons (background) dominate over γ (signal) by a factor of several 100. They are rejected in the analysis.

Imaging Air Cherenkov Technique

- 3D reconstruction of shower parameters
- Better source position determination
- Improved background reduction

Burkhard Steinke | MPI für Physik | DPG Frühjahrstagung March 1st 2012

MAGIC Major Atmospheric Gamma Imaging Cerenkov Telescope

SED Mrk 421 January 14th 2010

- Effective observation time $\approx 2.3 \text{ h}$
- Significance: 55 σ
- SED:
 80 GeV 5 TeV
- Curved power law fit
- Turnover resolved

SED Mrk 421 January 14th 2010

- Effective observation time $\approx 2.3 \text{ h}$
- Significance: 55 σ
- SED:
 80 GeV 5 TeV
- Curved power law fit
- Turnover resolved

EBL correction:

• Franceschini model: Franceschini, A., Rodighiero, G. & Vaccari, M., A&A **487** 83 (2008)

SED Mrk 421 January 14th 2010

OVRO (radio, 1.5 GHz) GASP (optical, *R* band, 461 THz) Swift/UVOT (UV, 1.05-1.93 PHz) Swift/XRT (X-ray, 0.3-9.6 keV) MAGIC (γ-ray, 80 GeV - 5 TeV)