Study of the decay of $B^0 \rightarrow \omega K_S^0$ at Belle

Veronika Chobanova, Jeremy Dalseno, Christian Kiesling

February 29th, 2012

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Physical Motivation Analysis of the Decay ${f B}^0 o \omega {f K}^0_{f S}$ Summary and outlook

Introduction to CP Violation

- Universe today is matter dominated
- Violation of CP = C(charge) ×P(parity) symmetry necessary to explain the matter-antimatter asymmetry after the Big Bang
- CP violation in the Standard Model: Cabbibo-Kobayashi-Maskawa (CKM) mechanism
- CKM mechanism desribes the relation between the weak and the mass eigenstates of quarks
- CKM mechanism expressed through a complex, unitary 3×3 matrix

CKM Matrix

$$\begin{pmatrix} d \\ s \\ b \end{pmatrix}_{\text{weak}} = V_{\text{CKM}} \begin{pmatrix} d \\ s \\ b \end{pmatrix}_{\text{mass}} \equiv \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}_{\text{mass}}$$

Vij : quark flavor transition couplings

CKM mechanism not enough to explain all the missing antimatter

CP Violation in the Standard Model

Wolfenstein parametrisation

$$V_{
m CKM} = \left(egin{array}{cc} 1-\lambda^2 & \lambda & A\lambda^3(
ho-i\eta) \ -\lambda & 1-\lambda^2/2 & A\lambda^2 \ A\lambda^3(1-
ho-i\eta) & -\lambda^2 & 1 \end{array}
ight) + \mathcal{O}(\lambda^4)$$

 $\lambda = \sin \theta_C \approx 0.22, \ \theta_C$: Cabibbo angle

4 free parameters: 3 mixing angles and 1 complex phase

 $\begin{array}{l} \mathsf{CKM} \mbox{ matrix is unitary} \\ \Rightarrow \ V_{ud} \cdot V_{ub}^* + V_{cd} \cdot V_{cb}^* + V_{td} \cdot V_{tb}^* = 0 \\ \mathcal{O}(\lambda^3) \quad \mathcal{O}(\lambda^3) \quad \mathcal{O}(\lambda^3) \\ \mbox{ relevant for the B meson system} \\ \\ \mbox{Sides with similar size} \Rightarrow \mbox{ large angles,} \\ \\ \mbox{ precise determination of the observables} \\ (3 \mbox{ angles and 2 sides}) \mbox{ possible} \\ \\ \\ \mbox{ problem over-constrained} \Rightarrow \mbox{ leaves} \\ \\ \\ \mbox{ room for New Physics} \end{array}$

Decays via charmless $b o sqar{q}$ (like $B^0 o \omega K^0_S$) transitions sensitive to ϕ_1

The Decay $B^0 \rightarrow \omega K_S^0$

Matrix elements for the two Feynman diagrams

- $M_{tree} \propto V_{ub} \cdot V_{us}^* \propto \lambda^3 \cdot \lambda \propto \lambda^4$
- $M_{peng} \propto V_{tb} \cdot V_{ts}^* \propto 1 \cdot \lambda^2 \propto \lambda^2$

 \Rightarrow Decay is dominated by the penguin contribution

Measurement of

The branching fraction $\mathcal{BR}(B^0 \to \omega K_S^0)$

The *CP* parameters \mathcal{A}_{CP} and $\mathcal{S}_{CP} = \sin \phi_1^{\text{eff}}$ (pollution from the tree diagram)

Physical Motivation

Why exactly the decay $B^0 \rightarrow \omega K_S^0$?

- Theory predicts in the Standard Model that $\sin 2\phi_1^{\text{eff}}$ from $b \rightarrow sq\bar{q}$ should be larger than for $b \rightarrow c\bar{c}s$ $(\sin 2\phi_1^{\text{eff}} - \sin 2\phi_1 \epsilon (0.0; 0.2))$
- But the measurement may be systematically lower, giving a hint of New Physics
- Could be caused by unknown new particle in the loop carrying different weak phase
- ► Leads to a measured shift from sin 2φ₁

Veronika Chobanova, Jeremy Dalseno, Christian Kiesling

CP Violation in the B Meson System

Time-dependent CP asymmetry

$$a_{CP}(\Delta t, f_{CP}) = \frac{N_{\overline{B}0}(\Delta t, f_{CP}) - N_{B^0}(\Delta t, f_{CP})}{N_{\overline{B}0}(\Delta t, f_{CP}) + N_{B^0}(\Delta t, f_{CP})} = \mathcal{A}_{CP} \cos(\Delta m \Delta t) + \mathcal{S}_{CP} \sin(\Delta m \Delta t)$$

CP Violation Measurement

$$\begin{array}{lll} m_{\Upsilon(45)} & = & 10.58 \, \mathrm{GeV/c^2} \approx 2 \times m_B \\ m_B & = & 5.28 \, \mathrm{GeV/c^2} \end{array}$$

B Meson production

► Ŷ(4S) resonance decays almost exclusively into a B⁰B⁰ pair

•
$$\Upsilon(4S): J^{PC} = 1^{--}$$

B: $J^{PC} = 0^{--}$

- \Rightarrow *B* meson pair in a p-wave
- \Rightarrow asymmetric wave function
- \Rightarrow *B* mesons have opposite

flavour

 $B^0\overline B{}^0$ pair coherent

CP Violation Measurement

B^0 or $\overline{B}{}^0$?

→ Look at the other *B* (tag-side): If $I^- \Rightarrow \overline{B}^0$ on the tag-side and \overline{B}^0 on the *CP*-side If $I^+ \Rightarrow \overline{B}^0$ on the tag-side and \overline{B}^0 on the *CP*-side

Δt measurement

Asymmetric beam energies at the Belle experiment: $E_{e^-} = 8 \text{ GeV}, E_{e^+} = 3.5 \text{ GeV}$ \Rightarrow Boost in the center of mass system Measurement of $\Delta z \sim 100 \,\mu\text{m}$ instead of $\Delta t \sim \text{ps}$ Obtain $\Delta t = \Delta z/c \langle \beta \gamma \rangle$

Approach

- **Goal 1**: Determination of $\mathcal{BR}(B^0 \to \omega K^0_S)$, \mathcal{A}_{CP} and \mathcal{S}_{CP}
- Goal 2: Minimize the statistical and and systematic uncertainties

Approach to Goal 1

- Build an algorithm to reconstruct $\mathcal{BR}(B^0 o \omega K^0_S)$
- Study the different backgrounds
- Build a model to separate the signal from the background (multidimensional fit)
- Test the model

So far: "Blind Analysis". Study only from Monte Carlo (MC) samples

- Apply model to the real data
- ▶ Determine $\mathcal{BR}(B^0 \to \omega K_S^0)$, \mathcal{A}_{CP} and \mathcal{S}_{CP} and the uncertainties

Approach to Goal 2

- Improve the models of the previous analysis
- ▶ Use the full available data of Belle (accelerator shut down in June 2010)

Prevolus Measurements of $B^0 \rightarrow \omega K_S^0$

	$B^0\overline{B}^0$ -pairs	${\cal BR}(B^0 o \omega K^0_S)$	\mathcal{A}_{CP}	\mathcal{S}_{CP}
Belle	$388 imes10^6$	$(4.4^{+0.8}_{-0.7}\pm0.4) imes10^{-6}$	-	-
Belle	$657 imes10^{6}$	-	$-0.09 \pm 0.29 \pm 0.06$	$0.11 \pm 0.46 \pm 0.07$
BaBar	$535 imes10^{6}$	$(5.4\pm0.8\pm0.3) imes10^{-6}$	$-0.52^{+0.22}_{-0.20}\pm0.03$	$0.55^{+0.26}_{-0.29}\pm0.02$

Challenging analysis

 ${\cal BR}(B^0 o \omega {\cal K}^0_{\cal S}) \sim 10^{-6}$ small

Large background contribution from $q\bar{q}$ background

Our method

Use loose cuts on the observables to collect maximum signal

Multidimensional fit to the observables including the event shape to separate signal and background

Measurement of $\mathcal{BR}(B^0 \to \omega K_S^0)$

Extract $\mathcal{BR}(B^0 \to \omega K_S^0)$ by a 6D extended unbinned maximum likelihood fit Fit variables: ΔE , $\mathcal{F}_{B\bar{B}/q\bar{q}}$, $m_{3\pi}$, $\mathcal{H}_{3\pi}$, q, Δt

 $\begin{array}{l} \Delta E = E_{\mathcal{B}_{\rm rec}} - E_{\rm beam} \\ \mathcal{F}_{\rm B\bar{B}/q\bar{q}} \mbox{ Fisher discriminant, event-shape dependent} \\ q = 1 \mbox{ for } {\rm B}^0 \mbox{ and } q = -1 \mbox{ for } \overline{{\rm B}}^0 \\ \mbox{ New in this analysis: } \mathcal{H}_{3\pi}, \mbox{ powerful observable for background discrimination} \end{array}$

Multidimensional analysis \Rightarrow model for signal and background necessary

Toy MC studies for $B^0 \rightarrow \omega K_S^0$

Test the model with Toy MC **Expected number of events**

Expectations for $\mathcal{B}(B^0 \to \omega K_S)$

Uncertainty 9.2% Error scaled to final data sets Belle (previous): 13% , BaBar: 13% \Rightarrow Our method is better

Pull distribution of $\mathcal{B}(B^0 \to \omega K_S)$

No bias, correct error estimation

Study of the decay of $B^0 \rightarrow \omega K_S^0$ at Belle

Results from the Fit to the Data

Black: Full PDF Total background *BB* background

Preliminary Result from $135 \times 10^6 B\bar{B}$ Pairs

 $\begin{array}{l} {\cal B}(B^0\to\omega {\cal K}^0)=[4.94^{+1.28}_{-1.14}]\times 10^{-6}\\ {\rm World\ average}\\ {\cal B}(B^0\to\omega {\cal K}^0)=[5.0\pm 0.6]\times 10^{-6} \end{array}$

Toy MC studies for $\mathcal{A}_{C\mathcal{P}}$ and $\mathcal{S}_{C\mathcal{P}}$

Expectations for \mathcal{A}_{CP}

Uncertainty ± 0.19 Error scaled to final data set Belle (previous): ± 0.24 , BaBar: ± 0.20

Pull distribution of \mathcal{A}_{CP}

No bias, correct error estimation

Expectations for \mathcal{S}_{CP}

Uncertainty ± 0.28 Error scaled to final data set Belle (previous): ± 0.38 , BaBar: ± 0.26

Pull distribution of S_{CP}

No bias, correct error estimation

Study of the decay of $B^0 \rightarrow \omega K_S^0$ at Belle

Summary and outlook

Outlook:

Find a way to add $M_{
m bc}$ to the fit \Rightarrow 7D fit

Further reduce the uncertainties by performing a simultaneous 7D fit to the charged decay with the same kinematics $B^+ \rightarrow \omega K^+$

- ▶ The decay $B^0 \rightarrow \omega K_S^0$ can provide us with knowledge of New Physics
- ► We have built a model which will provide better results than the previous Belle analysis
- ▶ The method is about be improved even to further reduce the statistical and systematic uncertainties for A_{CP} and S_{CP}
- ▶ With this improvement the results from this analysis will dominate the world average for \mathcal{A}_{CP} and \mathcal{S}_{CP} and $\mathcal{BR}(B^0 \to \omega K_5^0)$

