DPG Frühjahrstagung Göttingen 2012

The GALATEA Test Facility

Analysis of Surface Effects for coaxial n-type Germanium Detectors

Sabine Irlbeck

Max-Planck-Institut für Physik

February 28th, 2012

Outline

Outline

- Germanium Detectors
- In-type coaxial Germanium Detectors
- Surface Channel Effects
- The special detector "Supersiegfried"
- 9 Pulses and Mirror Pulses
- **o** The experimental Implementation
- Open Issues
- Conclusion

-Germanium Detectors

Germanium Detectors

- Why Germanium Detectors?
 - Widely used in nuclear physics experiments and dark matter searches
 - Measurement of low levels of radioactivity
 - Gamma ray tracking
 - Very sensitive devices with a high resolution
- Segmentation of Germanium Detectors
 - Position reconstruction
 - Discrimination of signal and background events
- Further Germanium detector properties
 - Charge trapping
 - Surface effects

n-type coaxial Detectors

n-type coaxial Detectors

- electron-hole pair creation
- n-type: the electric field pulls the electrons to the core and the holes to the mantle
- resulting pulses are sampled and digitized at a given frequency
- passivation layers
- end plates →
 contamination → creates
 BG if part of energy is seen

Surface Channel Effect

Surface Channel Effect

Surface Channel Effect

Path of electrons and holes in a detector with an n-type surface channel

Electron-hole pairs created in the surface channel region
(a) close to the n-contact
(b) close to the p-contact

Sabine Irlbeck The GALATEA Test Facility

n-type coaxial Detectors

"Supersiegfried"

- Cylindrical true coaxial n-type high purity germanium detector
- h = 70 mm
- Inner bore hole r = 5.05 mm
- Outer radius r = 37.5 mm
- 18 + 1 fold segmentation (3z and 6ϕ) \rightarrow segmentation for inference of
 - Event topologies
 - Event positions
- Single segment on one side of the detector

Pulses and Mirror Pulses

Example pulse seen by "SuSie" - one Event

NAX-PLANCE GESELLSCH AFT

Information from Pulses and Mirror Pulses

Pulse Shapes including Mirror Pulses

- Mirror Pulses in general
 - Information about the position of an event
 - Position in r → rise time plus polarity of mirror pulses
 - position in $\phi \rightarrow$ relative strength of mirror pulses

- Proximity to end plates \rightarrow we see long and strange pulses plus truncated mirror pulses
- How can we study this?

The Experimental Implementation

The Test Stand "Galatea"

Technical Requirements

- Cooling System
- Vacuum
- Adjustable Sources
- Readout Electronics

- The Experimental Implementation

The GALATEA setup

— The Experimental Implementation

Experimental Scanning of the Detector

- Sources inside the tank: looking for events which relate to α and β
- Using α and β particles to study the surface → they do not penetrate deeply (penetration depth of an electron: ≈ 1mm at 1 MeV in Ge)
- Effective inactive layers can be measured very precisely

The Experimental Implementation

└─ First Spectra

²²⁸Th Spectrum seen by the "SuSie" Detector in one representive Segment

Resolution (in all measurements)

- 19th segment: pprox 3 keV
- Core: pprox 15 keV
- Segments: 3-4 keV

Status Report

Status Report and Open Issues

Commissioning phase of Galatea

- Calibration spectra with a ⁶⁰Co and a ²²⁸Th source have been taken
- Vacuum, cooling, grounding, cable shielding need to be improved
- Improvement of the core resolution

- Conclusion

Summary and Outlook

What is our plan?

- Study surface effects in a segmented true-coaxial HPGe detector
- Identify and characterize surface events
- What do we need?
 - Scan of a special 19-fold segmented Ge detector with α and β sources
 - A test stand which allows a fully scan of the detector
- Where are we?
 - Commissioning phase
 - First calibration spectra have been taken
- Looking forward to full detector scans!

Backup Slides

Backup Slides

Backup Slides

Backup Slides

Characterisation of HPGe Detectors

- Background reduction through event recognition in low-background experiments
 - $0\nu\beta\beta$: localized event
 - γ : multiside events

- Germanium detector properties are important for further analysis, like
 - Charge trapping
 - Surface effects

Backup Slides

First Spectra

⁶⁰ Co Spectra seen by the "SuSie" detector in all segments

Sabine Irlbeck

The GALATEA Test Facility

Backup Slides

└─ First Spectra

⁹⁰Sr Spectrum seen by a ReGe detector

REGe = Reverse-Electrode Coaxial Ge Detector

Calibration Measurements

The REGe Detector

- Geometry is related to cylindrical Ge detectors
- mantle: p-contact, core: n-contact
- 3 keV 10 MeV
- ② Galatea Collimator holder
 - W collimator segments

• ${}^{90}\text{Sr} \rightarrow {}^{90}\text{Y} + e^- + \bar{\nu}$

③ β source: ⁹⁰Sr

Backup Slides

-Pulses and Mirror Pulses

Pulses and Mirror Pulses

Drift of charge carriers in a hitted segment induces mirror pulses in neighbouring segments

Real Pulse: charge "trajectory" ends at considered segment electrode

Mirror Pulse: charge "trajectory" does not end at considered segment electrode

Ref: Publication: "Pulse shape simulation for segmented true-coaxial HPGe detectors" by I. Abt, A. Caldwell, D. Lenz, J. Liu, B. Majorovits

Backup Slides

Pulses and Mirror Pulses

Characteristics of Mirror Pulses

Ref: Diploma Thesis: "Mirror pulses and position reconstruction in segmented HPGe detectors" by S.Hemmer

