

Pit Vanhoefer

Max-Planck-Institut für Physik

pvanhoef at mpp.mpg.de

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

1) Motivation

2)CP Violation

3) Measurement procedure

4)Summary & Outlook

Motivation

violation of ${\cal CP}$ symmetry necessary for matter anti-matter asymmetry

 $CP = C(\text{charge}) \times P(\text{parity}); \text{ violated by weak interaction}$

SM has a built-in mechanism generating CP violation: CKM mechanism.

weak and mass eigenstates related through a complex, unitary matrix:

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix}_{\text{weak}} = V_{\text{CKM}} \begin{pmatrix} d\\ s\\ b \end{pmatrix}_{\text{mass}} \equiv \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix}_{\text{mass}} \overset{\mathbf{b} \to \mathbf{u}}{\overset{\mathbf{v} \to \mathbf{u}}{\overset{\mathbf{v}}{\overset{\mathbf{v} \to \mathbf{u}}{\overset{\mathbf{v} \to \mathbf{u}}}{\overset{\mathbf{v} \to \mathbf{u}}{\overset{\mathbf{v} \to \mathbf{u}}}{\overset{\mathbf{v} \to \mathbf{u}}}{\overset{\mathbf{v} \to \mathbf{u}}{\overset{\mathbf{v} \to \mathbf{u}}}{\overset{\mathbf{v} \to \mathbf{u}}{\overset{\mathbf{v} \to \mathbf{u}}{\overset{\mathbf{v} \to \mathbf{u}}{\overset{\mathbf{u}}}}}}}}} \mathbf{u}{\overset{\mathbf{u} \to \mathbf{u}}}{\overset{\mathbf{u} \to \mathbf{u}}{\overset{\mathbf{u} \to \mathbf{u}}}{\overset{\mathbf{u} \to \mathbf{u}}}{\overset{\mathbf{u} \to \mathbf{u}}}{\overset{\mathbf{u} \to \mathbf{u}}}{\overset{\mathbf{u} \to \mathbf{u}}}}}}}}}$$

Cabibbo-Kobayashi-Maskawa CKM Matrix (Nobel prize 2008)

 V_{ij} : quark flavor transition couplings (W^{\pm} exchange).

BUT: CKM mechanism NOT able to produce observed asymmetry in our universe.

Pit Vanhoefer(MPI)
$$B^0
ightarrow
ho^0
ho^0$$
 DPG, 29.2.2012

2

CP Violation in the SM

Wolfenstein representation of $V_{\rm CKM}$, $\lambda = \sin \theta_{\rm C} pprox 0.22$ (Cabibbo angle)

$$V_{\rm CKM} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4).$$
(1)

4 free parameters(3 mixing angles, 1 complex phase) for 3 generations of quarks

relevant relation for B meson decays (\rightarrow triangle) $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$ $\mathcal{O}(\lambda^3) \qquad \mathcal{O}(\lambda^3) \qquad \mathcal{O}(\lambda^3)$ sides with similar length \Rightarrow large CP violation

precise determination of the observables

5 observables (3 angles, 2 sides) \Rightarrow over-constraint

confirm SM or find new physics

 $B^0
ightarrow
ho^0
ho^0$ is a tree dominated, color-suppressed, Scalar
ightarrow Vector Vector decay

assuming unitarity: ϕ_2

penguin pollution $\Rightarrow \Delta \phi_2, \mathcal{A}_{CP}$

 \Rightarrow measured observable: effective $\phi_{2,eff}$

•
$$\phi_{2,eff} = \phi_2 + \Delta \phi_2$$

 $\Rightarrow S_{CP} = sin(2\phi_{2,eff})$

Recover ϕ_2

• extraction of $\Delta \phi_2$ with isospin analysis (remove penguin pollution)

for unflavored isospin triplets, e.g. ρ,π

Bose statistics: \Rightarrow I=0,2 (final states);

tree I=0,2;

```
penguin: I=0 only (gluon; I=0)
```

allows to formulate relations of the decay amplitudes \boldsymbol{A}

e.g.
$$\bar{A}^{+-} = \mathcal{A}(\bar{B} \rightarrow \rho^+ \rho^-)$$

• $\frac{1}{\sqrt{2}}A^{+-} + A^{00} = A^{+0}$ • $\frac{1}{\sqrt{2}}\bar{A}^{+-} + \bar{A}^{00} = \bar{A}^{-0}$

• $A^{+0} = \overline{A}^{-0}$ (no penguin)

 \Rightarrow simple geometrical considerations

Recover d

In $b \to u$ transitions

- measurement of Δt provides $\sin(2\phi_{2,eff}) = \sin(2(\phi_2 + \Delta \phi_2))$
- extraction of $\Delta \phi_2$ through isospin analysis possible but 2(sin)× 4($\Delta \phi_2$) = 8 fold ambiguity

In the ρ system the SM predicts small penguin pollution

• $\mathcal{BR}(B^0\to\rho^0\rho^0)$ relatively very small

Pit Vanhoefer(MPI)

multiple solutions due to $\Delta\phi_2$ overlap \Rightarrow only 2 fold ambiguity

 \Rightarrow best environment for constraining ϕ_2 with current statistics

- current error on ϕ_2 dominated by the ρ system

 \Rightarrow measurement of $B^0 \rightarrow \rho^0 \rho^0$ important for the understanding of ϕ_2

Impact on CKM Angle ϕ_2

• variation of

 $\mathcal{BR}(B^0 \to \rho^0 \rho^0)$

in isospin analysis

```
W.A. = (0.73 \pm 0.28) \times 10^{-6}
```

prev. Belle

Babar

 $\bullet\,$ Helicity of the ρ

$$(
ho^0 o \pi^+ \pi^-)$$

2 different polarizations, longitudinal(L pol, CP even) and transversal(T pol, CP even & odd)

 f_L : fraction of L pol,through helicity analysis (SM: L pol dominant)

previous measurements

(theory: G.Bell, V.Pilipp: arXiv:0907.1016v1)

Experiment	BELLE	BaBar	Theory(L pol)
$\mathcal{BR}(imes 10^{-6})$	$0.4{\pm}0.4{\pm}0.25$	0.92±0.32±0.14	$0.44_{-0.37}^{+0.66}$
f_L	-	$0.75 \pm 0.11 \pm 0.04$	$\sim 1 - 1/m_b^2$
\mathcal{A}_{CP}^{L}	-	$\textbf{-0.2}\pm0.8\pm0.3$	
\mathcal{S}^{L}_{CP}	-	0.3±0.7±0.2	
$Bar{B}$ pairs ($ imes 10^6$)	656.7	465	

 \Rightarrow no significant measurement made at Belle (yet, $\sim 2 imes$ data)

challenging analysis

• rare decay: $\mathcal{BR} \leq 10^{-6}$

- large backgrounds
- complex helicity structure

new method

• no cut-based but multivariate analysis,

including event shape to discriminate $q \bar{q}$

and fraction of L pol f_L

Measurement of $\mathcal{BR}(B^{U})$

Extraction of $\mathcal{BR}(B^0\to\rho^0\rho^0):$ extended unbinned likelihood fit

6 fit dimensions:

 $\Delta E, m_{\pi^+\pi^-}^1, m_{\pi^+\pi^-}^2, \mathcal{F}_{evt}, \cos\theta_{\text{Hel}}^1, \cos\theta_{\text{Hel}}^2$

• multivariate analysis: \Rightarrow precise understanding of signal AND background necessary

$$\begin{array}{ll} \rightarrow \text{ modeled 17 components:} & \text{shape determined from} \\ \hline - \text{ signal } (L \text{ pol}, T \text{ pol}); & \text{Monte Carlo(MC)} \\ \hline - \text{ misreconstructed signal } (L \text{ pol}, T \text{ pol}); & \text{MC} \\ \hline - \text{ continuum } (e^+e^- \rightarrow q\bar{q}); & \text{data taken at } \sqrt{s} = 10.50 GeV < m(\Upsilon(4S)) \\ \hline - B\bar{B}: \text{ charm and charmless } B^0(B^\pm) \text{ decays;} & \text{MC} \\ \hline - \text{ peaking background } (4\pi \text{s final states}); & \text{MC} \\ \pi^+\pi^-\pi^+\pi^-, a_1^\pm\pi^\mp, a_2^\pm\pi^\mp, b_1^\pm\pi^\mp, f_0f_0, f_0\pi^+\pi^-, \rho^0\pi^+\pi^-, f_0\rho^0. & (\text{BR known}) \\ \hline \text{Pit Vanhoefer(MPI)} & B^0 \rightarrow \rho^0\rho^0 & \text{DPG, 29.2.2012} & 10 \\ \end{array}$$

 $\Delta E \equiv E_{B_{rec}} - E_{beam}$ $\mathcal{F}_{evt} : \text{event-shape}$ based fisher discriminant

Model for $\mathcal{BR}(B^0 \to \rho^0 \rho^0)$

$$\Delta E \equiv E_{B_{rec}} - E_{beam}$$

• signal MC(*L* pol)

• neutral charm decays

• signal MC(*L* pol)

• neutral charmless decays

Toy MC Studies for $\mathcal{BR}(B^0$ –

test fitting procedure with Toy MC

 \Rightarrow Toy MC Generator built: events according to \mathcal{PDF} (probability density function)

toy MC example

expected Nr of events

- signal: \sim 100
- 4 π s ff: \sim 1500
- $B\bar{B}$: \sim 10000
- all: \sim 100000

(using world averages)

Toy MC Studies for $\mathcal{BR}(B^0 \to \rho^0 \rho^0)$

• performed fits on 600 toy MC samples

 \Rightarrow observation with a 3 σ significance possible if \mathcal{BR} not too small!

Toy MC Studies

- performed fits on 600 toy MC samples, assuming $\mathcal{B}(B^0\to\rho^0\rho^0)=0.9\times10^{-6}$

 \Rightarrow measurement of the fraction of L pol f_L possible!

Preliminary Fit Result

 $\mathcal{B}(B^0 \to \rho^0 \rho^0) = (1.01^{+0.31}_{-0.29}(stat.) \pm 0.09(syst.) \pm syst_{interference}) \times 10^{-6}$ $f_L = 0.20^{+0.18}_{-0.23}(stat.) \pm 0.08(syst.) \pm syst_{interference}$

Summary & Outlook

- $B^0 \to \rho^0 \rho^0$ plays a important role in constraining ϕ_2
 - ightarrow isospin analysis
- also, this measurement is an important test of theory (not shown)

Scalar \rightarrow Vector Vector: complicated computations \leftrightarrow assumptions

• new multivariate approach, avoiding cuts and including helicity

 $\rightarrow 1^{st}$ evidence at Belle($\sim 3\sigma$, still after including interference??)

 $\mathcal{B}(B^0 \to \rho^0 \rho^0) = (1.01^{+0.31}_{-0.29}(stat.) \pm 0.09(syst.) \pm syst_{interference}) \times 10^{-6}$ $f_L = 0.20^{+0.18}_{-0.23}(stat.) \pm 0.08(syst.) \pm syst_{interference}$

Backup

Preliminary Fit Result

 $\mathcal{B}(B^0 \to \rho^0 \rho^0) = (1.01^{+0.31}_{-0.29}(stat.) \pm 0.09(syst.) \pm syst_{interference}) \times 10^{-6}$

 $f_L = 0.20^{+0.18}_{-0.23}(stat.) \pm 0.08(syst.) \pm syst_{interference}$

 $\Upsilon(4S) \rightarrow {\rm entangled} \ B\bar{B}$ pair \Rightarrow opposite side flavor tagging possible

asymmetric beam energies \Rightarrow boost of the CMS $\Rightarrow \Delta t \rightarrow \Delta z$ ($\Delta t \sim ps$, $\Delta z \sim 100 \mu$ m)

The Experimental Setup

The Belle Experiment

located at the KEKB collider in Japan

 $B^0 \to \rho^0 \rho^0$

Where the Bs come from:

- Υ states: $b\overline{b}$ bound states
- $\Upsilon(4S)$ exclusively into $B\bar{B}$ pairs
- $\Upsilon(4S): J^{PC} = 1^{--}$
- $B: J^{PC} = 0^{--}$

 $\rightarrow B$ pair in p-wave

- asymmetric wave function
 - ightarrow Bs have opposite flavor:
 - \Rightarrow entangled $B\bar{B}$ pair

continuum: $e^+e^- \rightarrow q\bar{q}$ (u,d,s,c)

gives large contribution

CP Violation in the B System

$$\frac{N_{\bar{B^0}}(t',f_{CP}) - N_{B^0}(t,f_{CP})}{N_{\bar{B^0}}(t',f_{CP}) + N_{B^0}(t,f_{CP})} = \mathcal{A}_{CP}\cos(\Delta m\Delta t) + \mathcal{S}_{CP}\sin(\Delta m\Delta t) , \Delta t = t' - t'$$

Model for $\mathcal{BR}(B^0 \to \rho^0 \rho^0)$

Fisher Discriminant: ($\sum p$, thrust, $cos(\Theta_B)$)

• MC(*a*₁π)

• off-resonance data

 \mathcal{PDF} =double bifurcated gaussian

Model for $\mathcal{BR}(B^0 \to \rho^0 \rho^0)$

Helicity: weighted with reconstruction efficiency histogram

• signal MC(L pol)

• signal MC(T pol)

Pit Vanhoefer(MPI)

 $B^0 \to \rho^0 \rho^0$

DPG, 29.2.2012

DPG, 29.2.2012

Backup: ToyMC Studies

results for $m_{\pi^+\pi^-} \in [0.52, 1.15] GeV/c^2$

 $a_2^{\pm}\pi^{\mp}$ upper limit gives less the 1 event \Rightarrow fixed to 0

Backup: ToyMC Studies

results for $m_{\pi^+\pi^-} \in [0.52, 1.15] GeV/c^2$

 $a_2^{\pm}\pi^{\mp}$ upper limit gives less the 1 event \Rightarrow fixed to 0

30

Measurement of $\mathcal{BR}(B^0\to\rho)$

Reconstruction:

$$B^0 \to \rho^0 \rho^0$$
$$\rho^0 \to \pi^+ \pi$$

- \Rightarrow 4 charged π s in the detector
- select π^{\pm} candidates: PID criteria
- reconstruct ρ^0 candidates from $\pi^+\pi^-$ pairs ρ^0 (770): broad resonance($\Gamma \sim 149 MeV$) $\rightarrow m_{\pi^+\pi^-} \in [0.52, 1.7] \ GeV/c^2$

excludes K^0_S (0.49) and D^0 (1.87) [GeV/c^2]

- reconstruct B^0 candidates from $\rho^0\rho^0$ pairs
- charm and strange vetos (due to combinatorics)
 - ightarrow removes peaking BKG

- vertexing
- flavor tagging

• select best
$$B^0$$
 candidate (M_{bc})
$$M_{bc} \equiv \sqrt{E_{beam}^2 - \vec{p}_{B_{rec}}^2}$$

- continuum identification
- randomize events to remove asymmetry due to ordering in the reconstruction

	L pol	T pol
rec Eff	19.6%	27.2%

Measurement of $\mathcal{BR}(B^0 \to \rho)$

• PID criteria: information from CDC, TOF and ACC \rightarrow likelihood ratios $\mathcal{LR}_{i/j}$

 $\mathcal{LR}_e < 0.9 \qquad \qquad \mathcal{LR}_{K/\pi} < 0.4 \qquad \qquad \mathcal{LR}_{p/\pi} < 0.9$

further loose cuts |dr| < 0.5 cm & |dz| < 5 cm

Measurement of $\mathcal{BR}(B^0)$

• charm and strange vetos: removes peaking background with similar final state

topology, e.g. $B^0 \to D^- (\pi^- \pi^+ \pi^-) \pi^+$ or wrong PID

• charm and strange vetos:

Measurement of $\mathcal{BR}(B)$

Cuts on $M(\pi\pi)$: D^0 : 1.86484 ± 0.02[GeV/c^2] K_s : 0.493677 ± 0.018[GeV/c^2] Cuts on $M(\pi\pi\pi)$: D^{\pm} : 1.8696 ± 0.02[GeV/c^2] D_s^{\pm} : 1.96849 ± 0.02[GeV/c^2] Cuts on $M(\mu\mu)$: $J\Psi$: 3.0969 ± 0.04[GeV/c^2]

 \rightarrow loss in $\epsilon_{rec} \sim 4\%$

Measurement of $\mathcal{BR}(B^0\to\rho^0\rho^0)$

• BCS: best candidate selection

Measurement of $\mathcal{BR}(B^0)$

- continuum identification: combined event shape variables using fisher discriminant
- $\cos(\theta_B)$

