Suche nach dem Higgsboson im Kanal $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ mit dem ATLAS-Detektor

Max Goblirsch, Oliver Kortner, Hubert Kroha

MPI für Physik, München

27.02.2012

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

 $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$

- Sehr saubere Signatur
- Möglichkeit zur präzisen Massenbestimmung
- Suche: Schmale Resonanz im 4-Lepton-Massenspektrum

- Aktuelle Veröffentlichung (4.8fb⁻¹): arXiv:1202.1415
- → entsprechende ATLAS-SM-Higgs-Kombination: arXiv:1202.1408

27.02.2012 2 / 15

Hauptuntergrund: ZZ-Kontinuumsproduktion (irreduzibel), Z+(b-)Jets, $t\bar{t}$

→ Nutze Isolierung und Stoßparameter

Vorselektion

- Auslösen der Einzel- oder Dileptontrigger
- Suche 2 entgegengesetzt geladenene Leptonpaare gleichen Flavours

Anforderung an Ereignisse mit 2 Leptonpaaren

- mind. 2 der 4 Leptonen hochenergetisch: $p_T > 20 \text{ GeV}$
- 1 reales Z: $|M_{12} M_Z| < 15 \text{ GeV}$
- zweites Leptonpaar: Masse in bestimmtem Korridor:

$M_{34} < 115 \text{ GeV}, M_{34} > M_{min}(M_{4\ell})$									
	$M_{4\ell}$ [GeV]	<120	130	150	160	165	180	190	>200
	M _{min} [GeV]	15	20	30	30	35	40	50	60

• Ausreichende räumliche Trennung der Leptonen: $\Delta R(\ell_i \ell_i) > 0.1 \ \forall i, j \in 1..4$

• dabei:
$$\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \Phi)^2}$$

Abschätzung verbleibender Untergründe:

- Normierung und Massenverteilung aus Monte-Carlo-Simulation
 - Validierung der Ergebnisse durch datenbasierte Methoden

Setzen von Ausschlussgrenzen

• Ausschluss eines Standardmodell-Higgsbosons in den Bereichen $M_H = 134..156$ GeV, 182..233 GeV, 256..265 GeV, 266..415 GeV

 $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ mit ATLAS

Suche nach möglichen Resonanzen

• Größte Abweichungen von der Erwartung:

 $M_H = 125 \text{ GeV} (2.1\sigma), M_H = 244 \text{ GeV} (2.2\sigma), M_H = 500 \text{ GeV} (2.1\sigma)$

(MPI)

- Gleichzeitiger Nachweis von 4 Leptonen: Benötigt hohe Nachweiseffizienz
- Erhöhung der Effizienz: stark verbesserte Suchempfindlichkeit

• Einsatz der Kalorimeter und alleinige Identifikation mit dem Myonspektrometer in den kommenden Analysedurchläufen

- Myonidentifizierung durch die Kalorimeter, benötigen kein Myonspektrometer
- Effekt: deutlicher Effizienzgewinn in der Zentralregion

- Insgesamt: rund 5% erwarteter Signalgewinn für $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$
- Zusammen mit Spektrometermyonen: 8 10%

Effizienzstudien, Skalierungsfaktoren

- Fragestellung: Beschreibt die Simulation die Effizienz der Kalorimeterrekonstruktion korrekt?
- Ansatz: Myonen aus $Z \rightarrow \mu\mu$ -Zerfällen

27.02.2012

10/15

Analyse von Fehlidentifizierungen

- Fehlidentifizierungen aus Zerfällen geladener π/K bei Kalorimeter- und Spektrometermyonen möglich
- Hauptquelle: Z+leichte Jets
- \rightarrow Kontrollregion: $Z \rightarrow \ell \ell$ nach $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ -Selektion

- $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ stellt einen hochempfindlichen Suchkanal im Bereich 120 GeV < M_H < 600 GeV dar
- Aktuelle Analyse: Nahezu vollständiger Ausschluss eines Standardmodell-Higgsbosons in der Massenregion M_H = 134..156 GeV sowie M_H = 182..415 GeV
- Erweiterungen des Myonnachweises werden die Effizienz weiter steigern
 - bei akzeptablem Anstieg der Fehlidentifizierungsrate
- 2012: Erwarte 15fb⁻¹ bei $\sqrt{s} = 8$ TeV
- → Möglichkeit eines Ausschlusses im ganzen Massenbereich

Backup

A B >
A
B >
A
B
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

27.02.2012 14 / 15

토 🕨 🖈 토 🕨

Mehr zu Fehlidentifizierungen

