Hochratentests schneller hochauflösender Driftrohrkammern für den Ausbau des ATLAS-Myonspektrometers

Bernhard Bittner¹ Jörg Dubbert¹ Hubert Kroha¹ Alessandro Manfredini¹ <u>Philipp Schwegler</u>¹ Daniele Zanzi¹ Otmar Biebel² Albert Engl² Ralf Hertenberger² André Zibell²

philipp.schwegler@cern.ch

¹Max-Planck-Institut für Physik, München

²Ludwig-Maximilians-Universität, München

DPG Frühjahrstagung

Göttingen, 2. März 2012

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Das ATLAS Myonspektrometer

Präzisionskammern

1150 Monitored Drift Tube Kammern (MDT) 32 Cathode Strip Chambers (CSC)

Triggerkammern

606 Resistive Plate Chambers (RPC) 3588 Thin Gap Chambers (TGC)

LHC Langzeitplanung

Raten im ATLAS Myonspektrometer

- Erhöhung der LHC-Luminosität nach 2022 auf den siebenfachen nominellen Wert von ${\cal L}=1\cdot 10^{34}\,cm^{-2}s^{-1}$
- Untergrundtrefferrate steigt proportional mit ${\ensuremath{\mathcal L}}$

 \Rightarrow Rate in innerer Vorwärtsrichtung *(Small Wheel)* übersteigt die Ratenfähigkeit des Detektors

Erwartete Rate in Hz/cm² bei nomineller LHC Luminosität:

Raten im ATLAS Myonspektrometer

- Erhöhung der LHC-Luminosität nach 2022 auf den siebenfachen nominellen Wert von ${\cal L}=1\cdot 10^{34}\,cm^{-2}s^{-1}$
- Untergrundtrefferrate steigt proportional mit ${\ensuremath{\mathcal L}}$

⇒ Rate in innerer Vorwärtsrichtung (Small Wheel) übersteigt die Ratenfähigkeit des Detektors

Die ATLAS MDT-Kammern

- Gasgemisch: Ar/CO₂ (93/7)
- bei 3 bar absolutem Druck
- $\bullet \ \ \text{Max. Driftzeit:} \approx 700 \, \text{ns}$
- Einzelrohrauflösung: 80 μm
- Genauigkeit der Drahtpositionierung: $\approx 20~\mu m$
- Spurrekonstruktionsauflösung einer Kammer: $\approx 40\,\mu m$

Problem bei hohen Untergrundraten

Treffer von sekundären Neutronen und γ 's aus Reaktionen in Abschirmung und anderen Detektorkomponenten verschlechtern Nachweiseffizienz und Ortsauflösung.

sMDT's mit reduziertem Rohrdurchmesser

Halbieren des äußeren Rohrdurchmessers:

- 7.4× geringere Belegungsrate
 - kürzere max. Driftzeit (700→185 ns)
 - Rohrdurchmesser (14.6→7.1 mm)
- 8× unempfindlicher auf Raumladung (16× für geladene Teilchen)
- mehr Rohrlagen im gleichen Volumen
 ⇒ robustere Spurrekonstruktion

CERN Gamma Irradiation Facility (GIF)

Ziel: Messung von Ortsauflösung und Einzelrohreffizienz in Abhängigkeit der Untergrundtrefferrate.

- Ortsauflösung durch Vielfachstreuung verschlechtert

Auswertung

- Oberste und unterste 4 Rohrlagen abgeschirmt \Rightarrow Referenzspurfit
- Innere 4 Rohrlagen bei unterschiedlichen Raten

Auswertung

- Bestimmung der Residuen in den bestrahlten Rohren mit der rekonstruierten Spur aus dem abgeschirmten Referenzbereich.
- Korrektur der Spurunsicherheit und Vielfachstreuung Einzelrohrauflösung σ
- 3 Bestimmung der 3 σ Einzelrohreffizienz.

Ergebnisse

- Einzelrohrauflösung bis zu den höchsten erwarteten Raten besser als 160 µm.
- Einzelrohreffizienz bei den höchsten erwarteten Raten \approx 70%.

Ergebnisse

Einzelrohrergebnisse in Monte Carlo Simulation \Rightarrow Vorhersage für Ortsauflösung in neuen Small Wheels:

Ortsauflösung besser $60\,\mu m$ bei den höchsten erwarteten Untergrundraten von $14\,kHz/cm^2$ erfüllt.

Zusammenfassung

- Steigerung der LHC-Luminosität nach 2022 um den Faktor 7 gegenüber der nominellen Luminosität geplant.
- Detektoren der innersten Lage in Vorwärtsrichtung des ATLAS-Myonspektrometers (Small Wheels) müssen durch neue hochratenfähige Detektoren ersetzt werden.
- Ergebnisse aus Hochratentest in der Gamma Irradiation Facility bei höchster erwarteter Rate von 14 kHz/cm²:
 - Einzelrohrauflösung: 160 µm
 - Einzelrohreffizienz: 70%
 - \Rightarrow Segmentrekonstruktionsauflösung: <60 μ m
- \Rightarrow Anforderungen an Detektoren für neue Small Wheels erfüllt.