## Suche nach $H \rightarrow W^+W^- \rightarrow \ell^+ \nu \ell^- \bar{\nu}$ -Zerfällen in Assoziation mit zwei Jets mit dem ATLAS-Detektor

Johanna Bronner<sup>1</sup> S. Kortner, <sup>1</sup> R. Sandström, <sup>1</sup> S. Stern, <sup>1</sup> D. Zanzi, <sup>1</sup> M. Vanadia, <sup>1</sup> M. Goblirsch-Kolb, <sup>1</sup> A. Manfredini, <sup>1</sup> H. Kroha, <sup>1</sup> O. Kortner <sup>1</sup> E. Schmidt <sup>2</sup> A. Walz <sup>2</sup>

<sup>1</sup>Max-Planck-Institut für Physik, München <sup>2</sup>Albert-Ludwigs-Unerversität, Freiburg

DPG Frühjahrestagung, 2012





Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)



# Überblick

Die Analyse des  $H \rightarrow WW$ -Zerfalls in Assoziation mit zwei Jets mit Daten, die 2011 mit dem ATLAS-Detektor aufgezeichneten wurden ( $\doteq 4.7 \text{ fb}^{-1}$ ) soll vorgestellt werden.

- Higgs-Boson-Produktion am LHC.
- Die Signatur des dibosonischen Higgs-Zerfalls der Vektor-Boson-Fusions-Produktion.
- Die Ereignisselektion im 2-Jetkanal.
- Die, für  $\int \mathcal{L} dt = 4.7 \text{ fb}^{-1}$  erwarteten Ausschlussgrenzen.

### Higgs-Boson-Produktion am LHC

Gluon-Gluon-Fusion (ggF):

•  $\sigma_{ggF}$  ist **dominanter** Wirkungsquerschnitt am LHC.

#### Vektor-Boson-Fusion (VBF):

- $\sigma_{VBF} \approx 1/10 \cdot \sigma_{ggF}$
- Klare Signatur mit zwei harten Jets im Vorwärtsbereich.



Hauptbeitrag!

Auf Grund der klaren Signatur ist dieser Produktionsmechanismus trotz des kleinen Wirkungsquerschnitts sehr interessant

## Die Signatur des $H(+2j) \rightarrow WW \rightarrow \ell \nu \ell \nu$ -Zerfalls

#### Der dibosonische Higgs-Zerfall

- Große Zerfallsbreite für großen Massenbereich.
- Klare Signatur mit:
  - Zwei Leptonen (e, μ): mit hohem Impuls und wenig Aktivität um das Lepton herum (isoliert).
  - Zwei Neutrinos
    - $\rightarrow$  fehlende transversale Energie  $E_{T,rel}^{miss}$ .
  - Kleiner Öffnungswinkel im Dileptonsystem
  - Transversale Higgsmasse aus Lepton- $E_{T,rel}^{miss}$ -System.

$$\begin{array}{l} (\ m_T = \sqrt{(E_T^{\ell\ell} + E_{T,rel}^{miss})^2 - |\vec{p}_T^{\ell\ell} + \vec{p}_T^{miss}|^2}, \\ \\ \text{mit} \ E_T^{\ell\ell} = \sqrt{|\vec{p}_T^{\ell\ell}|^2 + m_{\ell\ell}^2}, \ |p_T^{miss}| = E_{T,rel}^{miss} \text{ und } |\vec{p}_T^{\ell\ell}| = p_T \end{array}$$



Die Analyse wird unterteilt in Dilepton- und Jetmultiplizitätsendzustände: •  $ee,e\mu$  und  $\mu\mu$  • 0-Jet, 1-Jet und  $\geq$ 2-Jet.



### Die VBF-Topologie

- Zwei harte Jets in entgegengesetzter Hemisphäre im Vorwärtsbereich des Detektors.
- Nur Higgs-Aktivität im zentralen Bereich des Detektors.

Johanna Bronner (Max-Planck-Institut für Physik)

### Selektion von Jets

Welche Eigenschaften hat ein Jet aus einem  $H(+2j) \rightarrow WW \rightarrow \ell \nu \ell \nu$  Prozess?

- Hochenergetisch.
- Kommt von der harten Kollision  $\Rightarrow$  vom Signal Vertex.

Jet aus Pile-Up Wechselwirkungen sind wie auch Jets aus der VBF-Produktion, oft in Vorwärtsrichtung  $\Rightarrow$  Unterdrückung von Pile-Up Jets ist essentiell



## Die Untergründe im 2-Jet-Kanals

Nach der Vorselektion von Ereignissen mit

- zwei harten, isolierten Leptonen,
- fehlender transversaler Energie Emiss und
- mindestens zwei Jets mit hohem transversalen Impuls ( $p_T > 25 \text{GeV}$ )

werden folgende Untergründe erwartet:



#### Jetmultiplizität nach der Vorselektion



Top: (tt und Singletop)

- Diboson:
  - WW : Nicht reduzierbarer Untergrund
  - WZ,ZZ,Wγ
- Z+jets
- W+jets

In der Folge: Reduktion dieser Untergründe!

### Zentrales Jet-Veto

<u>Zentrales Jet-Veto</u>:  $\Rightarrow$  Ereignisse mit **zusätzlichen zentralen Jets** werden verworfen!



Jetmultiplizitätsverteilung für zwei Datennahmeperioden mit unterschiedlichen Pile-Up Konditionen  $\Rightarrow$  Keine Pile-Up Abhängigkeit.



nach dem zentralen Jet-Veto:

Johanna Bronner (Max-Planck-Institut für Physik)

 $H(+2j) \rightarrow WW \rightarrow \ell \nu \ell \nu \text{ mit ATLAS}$ 



### b-Jet Veto

- Top-Quarks zerfallen fast ausschließlich in b-Quarks.
- Jets aus b-Quarks können durch den rekonstruierbaren sekundären
  B-Zerfallsvertex erkannt werden
  - $\Rightarrow$  Ereignisse mit b-artigen Jets werden verworfen!

nach der Vorselektion:





 $m_T$  nach dem b-Veto:

#### In Zahlen:

| in Zumen. | Sig. (MC)       | Bkg. (MC)     | S/B.  |
|-----------|-----------------|---------------|-------|
| vorher    | $7.56 \pm 0.06$ | 3757.18±15.22 | 0.002 |
| nachher   | $6.44 \pm 0.05$ | 598.76±7.82   | 0.011 |

## Jet-Kinematiken der VBF Topologie



VBF-Jets liegen in entgegengesetzten Hemisphären und im Vorwärtsbereich des Detektors.



| In Zahlen: |                   |                  |       |
|------------|-------------------|------------------|-------|
|            | Sig. (MC)         | Bkg. (MC)        | S/B   |
| vorher     | 6.44±0.05         | 598.76±7.82      | 0.011 |
| nachher    | $1.26 {\pm} 0.02$ | $13.58 \pm 0.77$ | 0.093 |

 $m_T$  nach den Rapiditätsschnitten

#### Die Bilanz der transversalen Impulse und das $Z \rightarrow \tau \tau$ -Veto

Gesamtimpuls des Lepton-Jet-MET-Systems









| Sig. (MC)         | Bkg. (MC)                           | S/B                                                                                  |
|-------------------|-------------------------------------|--------------------------------------------------------------------------------------|
| $1.26 \pm 0.02$   | $13.58 \pm 0.77$                    | 0.093                                                                                |
| $0.91 {\pm} 0.01$ | 6.29±0.47                           | 0.145                                                                                |
|                   | Sig. (MC)<br>1.26±0.02<br>0.91±0.01 | Sig. (MC)     Bkg. (MC)       1.26±0.02     13.58±0.77       0.91±0.01     6.29±0.47 |

 $Z \rightarrow \tau \tau$ -Masse aus der koll. Approximation.

## Die Higgszerfallstopologie

Invariante Dileptonmasse:



#### Dilepton Öffnungswinkel:



 $\Delta \phi < 1.8$ 





 $m_{T}$  nach allen Schnitten:

2-Jet-Kanal: zu geringe Statistik  $\Rightarrow$  Keine Bedingung an  $m_T$ !

0- und 1-Jetkanal

Fit der  $m_T$ -Verteilung

 $\Rightarrow$  Ausschlussgrenzen.

## Untergrundbestimmung und systematische Unsicherheiten

#### Untergrundabschätzung im 2-Jet-Kanal:

- Top: Normierung aus datenbasierter Kontrollregion durch invertierung des b-Vetos vor den Schnitten auf  $\Delta \phi$  und  $m_{\ell \ell}$ .
- Diboson und Z+jet durch Monte-Carlo Vorhersage.
- W+jet: Datenbasierte Abschätzung in Kontrollregion. Beitrag vernachlässigbar im 2-Jet Kanal.

#### Dominante systematische Unsicherheiten für den VBF-Kanal

#### Theoretische Unsicherheiten:

- VBF-Wirkungsquerschnitt:
  - 16% für m<sub>H</sub> = 125 GeV
  - ▶ 7% für m<sub>H</sub> = 300 GeV
- ggF Beitrag nach VBF-Schnitten sehr klein
   ⇒ Unsicherheit auf diesen Beitrag
   vernachlässigbar.

#### **Experimentelle Unsicherheiten:**

- Unsicherheit der Jetenergiemessung: < 14% (< 5% für Pile-Up Jets)
- Fehlende transversale Energie und Pile-Up: 10%
- Effizienz der b-Jet Erkennung: 4.8 13.7% (p<sub>T</sub> abhängig)
- Luminosität: 3.9%

## Ergebnisse und Ausblick

Erwarteter Ausschluss durch den 2-Jet Kanal

#### Kombinierter erwarteter Ausschluss



- 2-Jet-Kanal hat sehr hohes Signal-zu-Untergrund-Verhältnis.
- Geringe Statistik für  $\int \mathcal{L} dt = 4.7 \text{ fb}^{-1}$

 $\Rightarrow$  2-Jet-Kanal hat nur ein kleinen Beitrag zu den  $H \rightarrow WW$ -Ausschlussgrenzen.

• 2012: 3 mal soviele Proton-Proton-Kollisionen (15 fb<sup>-1</sup>) erwartet bei  $\sqrt{s} = 8$  GeV  $\Rightarrow$  Beitrag des 2 Jet Kanals wichtig.

## Backup