Dünne Silizium-Sensoren und 3D-Integration für den ATLAS Pixel-Detektor am HL-LHC

Philipp Weigell^a,
L. Andricek^{a,b}, A. Macchiolo^a,
H.-G. Moser^{a,b}, R. Nisius^a und R.-H. Richter^{a,b}

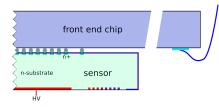
^aMax-Planck-Institut für Physik, ^bMax-Planck-Institut Halbleiterlabor


In Kollaboration mit

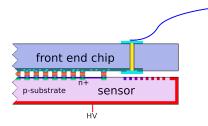
FIMILI

Zukunft des ATLAS Inneren Detektors

Eckpunkte

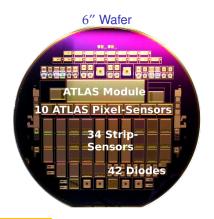

- Zweistufiger Ausbau:
 - Insertable B-Layer (IBL) ~2013/4
 - Ersatz des Inneren Detektors je nach Performanz
 ~2018 (Wird 2013 entschieden)
- Luminosität: $(2-3) \cdot 10^{34} 10^{35} / (\text{cm}^2\text{s})$
- \Rightarrow Strahlenbelastung: $\phi_{eq} \approx 10^{15} 2 \cdot 10^{16} \, n_{eq} / cm^2$

Strategie


- Sensortechnologie offen für Upgrades nach IBL:
 n-in-p exzellenter Kandidat für große Flächen.
 - Einseitiger Prozess → niedrigere Kosten.
 - Strahlenhärte: wie n-in-n
- Kompaktes Design
 - Weniger Vielfachstreuung
 - Größere aktive Fläche
- F&E: Derzeitiger ATLAS Auslesechip

Unser Pixel Modulkonzept

Aktuelles Design

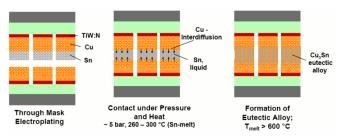

Dünne Sensoren + ICV-SLID

Vier neue Technologien

- N-in-p
 - Geringere Produktionskosten
- Dünne Sensoren (MPP-HLL Prozess)
 - Höhere
 Ladungssammlungseffizienzen
 (CCE) nach Bestrahlung
 - Weniger Vielfachstreuung
- SLID: Solid Liquid Inter-Diffusion
 - Ermöglicht vertikale Integration
 - Separation von analogen und digitalen Teilen (mit ICV)
- ICV: Inter-Chip-Vias
 - Kompakter: "Balkon" zur Signalextraktion nicht benötigt
 - Vergrößerung der aktiven Fläche

Dünne Sensoren Prozess am MPP/HLL

Implant backside
 on sensor


3. Thin sensor side to desired thickness

Process on top side

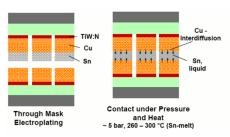
Structure resist, etch backside up to oxide

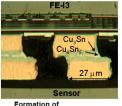
SLID: Solid Liquid Inter-Diffusion

Alternative zum Bump Bonding

Pros

- Vertikale Integration möglich (T_{schmelz}).
- Beliebige Geometrien und kleinere Abstände möglich.
- Weniger Prozessschritte → geringere Kosten.
- Wafer-zu-Wafer und Chip-zu-Wafer möglich.


Cons


- Planarität von 1 μm benötigt.
- Homogener Druck benötigt.
- Kein "rework" möglich.
- Chip-zu-Chip noch nicht möglich.

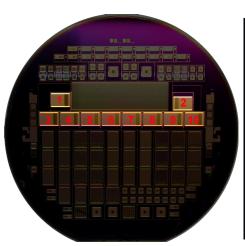
Page 5

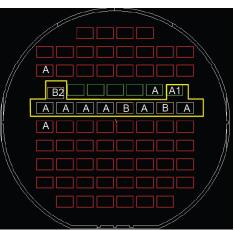
SLID: Solid Liquid Inter-Diffusion

Eutectic Allov:

T_{melt} > 600 °C

Alternative zum Bump Bonding

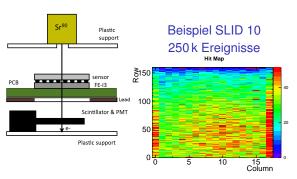

Pros


- Vertikale Integration möglich (T_{schmelz}).
- Beliebige Geometrien und kleinere Abstände möglich.
- Weniger Prozessschritte → geringere Kosten.
- Wafer-zu-Wafer und Chip-zu-Wafer möglich.

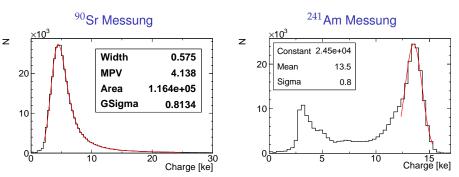
Cons

- Planarität von 1 μ m benötigt.
- Homogener Druck benötigt.
- Kein "rework" möglich.
- Chip-zu-Chip noch nicht möglich.

Chip-zu-Wafer



Quellenmessungen


- 90 Sr (β) und 241 Am (γ) Quellen zur Bestimmung der Ladungssammlung
- Trigger

Extern Via Szintillator (⁹⁰Sr) Intern Chip-Trigger (²⁴¹Am)

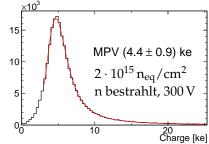
Eigenschaften vor Bestrahlung

- Leckströme unter 100 nA für alle Module.
- $\bullet\,$ Durchbruchspannungen über 120 V vollständige Verarmung ${\sim}40$ V.
- Schwellen zwischen 2500 und 3500 e eingestellt.
- Ladungen entsprechen im Rahmen der Kalibrationsunsicherheiten den Erwartungen für 75 μ m Dicke.
- Die Ladungssammlung ist homogen für alle Module.

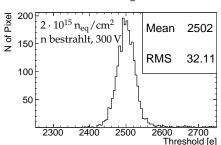
Ladungssammlung nach Bestrahlung

Bestrahlungen

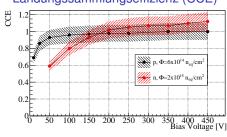
• Ljubljana: $2 \cdot 10^{15} \, n_{eq}/cm^2$


• KIT: $6 \cdot 10^{14} \, \text{n}_{\text{eq}} / \text{cm}^2$

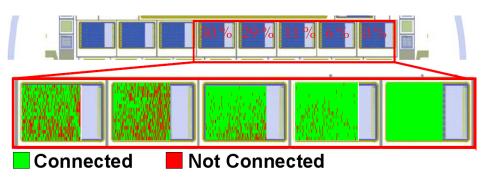
• Schwelle: 2500 e Rauschen: 170 e


 Für beide Fluenzen volle CCE erreichbar

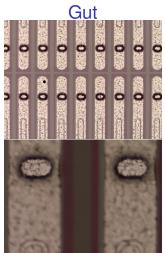
(Band: korrelierte Unsicherheiten)

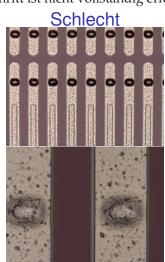

⁹⁰Sr Messungen

Tuning

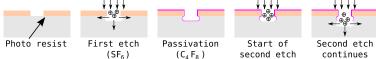


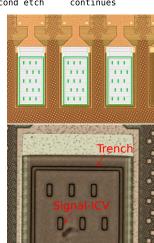
Landungssammlungseffizienz (CCE)


Überblick über die SLID-Verbindungseffizienzen


- Zahl der unverbundenen Kanäle steigt zur Wafermitte auf Grund nicht perfekt geöffneter BCB-Passivierung.
- Stabil nach Bestrahlung bis zu $2 \cdot 10^{15}$ n_{eq}/cm² und thermischen Zyklen.

Grund: BCB-Passivierungs-Öffnung


Die Passivierung muss geöffnet werden, um eine Verbindung zwischen Chip und Sensor zu ermöglichen. Dieser Prozessschritt ist nicht vollständig erfolgt.


Inter-Chip Vias (ICV) auf ATLAS Chips

- Via-Ätzung im Bosch-Prozess.
- Wolframfüllung der Vias
- Dünnen des Chips zur Zieldicke.
- SLID-Verbindung.
- Erste Ätzversuche auf Test-Wafer erfolgreich.
- Mai: Ätzen des Chip-Wafers

EMFT erreicht aspect ratios von: 8:1 (Wichtig für Einzelpixelverbindungen).

Zusammenfassung & Pläne

Zusammenfassung

- Erste Single Chip Module mit SLID Verbindungen zeigen gute Eigenschaften:
 - Geringe Leckströme & hohe Durchbruchspannungen
 - Gesammelte Ladung wie erwartet
 - Hohes CCE nach Bestrahlung
- Trend unverbundener Kanäle zur Wafermitte auf Grund von fehlenden BCB-Passivierungs-Öffnungen → d.h. nicht auf Grund der Verbindungstechnologie!
- Erste ICVs auf Test-Wafer erfolgreich

Pläne

- ullet Bestrahlung bis zu $\phi=10^{16}\,\mathrm{n_{eq/cm^2}}$
- Demonstrationsmodul mit SLID und ICV