Dünne Silizium-Sensoren und 3D-Integration für den ATLAS Pixel-Detektor am HL-LHC

Philipp Weigell^a, L. Andricek^{a,b}, A. Macchiolo^a, H.-G. Moser^{a,b}, R. Nisius^a und R.-H. Richter^{a,b}

^{*a*}Max-Planck-Institut für Physik, ^{*b*}Max-Planck-Institut Halbleiterlabor

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) In Kollaboration mit Fraunhofer

EMFT

© Fraunhofer EMFT / Bernd Mueller

Zukunft des ATLAS Inneren Detektors

Eckpunkte

- Zweistufiger Ausbau:
 - Insertable B-Layer (IBL) $\sim 2013/4$
 - Ersatz des Inneren Detektors je nach Performanz ~2018 (Wird 2013 entschieden)
- Luminosität: $(2-3) \cdot 10^{34} 10^{35} / (cm^2 s)$
- \Rightarrow Strahlenbelastung: $\phi_{eq} \approx 10^{15} 2 \cdot 10^{16} \, n_{eq} / cm^2$

Strategie

- Sensortechnologie offen f
 ür Upgrades nach IBL: n-in-p exzellenter Kandidat f
 ür gro
 ße Fl
 ächen.
 - Einseitiger Prozess \rightarrow niedrigere Kosten.
 - Strahlenhärte: wie n-in-n
- Kompaktes Design
 - Weniger Vielfachstreuung
 - Größere aktive Fläche
- F&E: Derzeitiger ATLAS Auslesechip

Unser Pixel Modulkonzept

Vier neue Technologien

- N-in-p
 - Geringere Produktionskosten
- Dünne Sensoren (MPP-HLL Prozess)
 - Höhere

Ladungssammlungseffizienzen (CCE) nach Bestrahlung

- Weniger Vielfachstreuung
- SLID: Solid Liquid Inter-Diffusion
 - Ermöglicht vertikale Integration
 - Separation von analogen und digitalen Teilen (mit ICV)
- ICV: Inter-Chip-Vias
 - Kompakter: "Balkon" zur Signalextraktion nicht benötigt
 - Vergrößerung der aktiven Fläche

нv

Dünne Sensoren Prozess am MPP/HLL

SLID: Solid Liquid Inter-Diffusion

Alternative zum Bump Bonding

Pros

- Vertikale Integration möglich (T_{schmelz}).
- Beliebige Geometrien und kleinere Abstände möglich.
- Weniger Prozessschritte \rightarrow geringere Kosten.
- Wafer-zu-Wafer und Chip-zu-Wafer möglich.

Cons

- Planarität von 1 μm benötigt.
- Homogener Druck benötigt.
- Kein "rework" möglich.
- Chip-zu-Chip noch nicht möglich.

SLID: Solid Liquid Inter-Diffusion

Alternative zum Bump Bonding

Pros

- Vertikale Integration möglich (T_{schmelz}).
- Beliebige Geometrien und kleinere Abstände möglich.
- Weniger Prozessschritte → geringere Kosten.
- Wafer-zu-Wafer und Chip-zu-Wafer möglich.

Cons

Fraunhofer

EMET

- Planarität von 1 μm benötigt.
- Homogener Druck benötigt.
- Kein "rework" möglich.
- Chip-zu-Chip noch nicht möglich.

Chip-zu-Wafer

Quellenmessungen

- ⁹⁰Sr (β) und ²⁴¹Am (γ) Quellen zur Bestimmung der Ladungssammlung
- Trigger

Extern Via Szintillator (⁹⁰Sr) Intern Chip-Trigger (²⁴¹Am)

Eigenschaften vor Bestrahlung

- Leckströme unter 100 nA für alle Module.
- Durchbruchspannungen über 120 V vollständige Verarmung ${\sim}40$ V.
- Schwellen zwischen 2500 und 3500 e eingestellt.
- Ladungen entsprechen im Rahmen der Kalibrationsunsicherheiten den Erwartungen für 75 μ m Dicke.
- Die Ladungssammlung ist homogen für alle Module.

Ladungssammlung nach Bestrahlung

- Bestrahlungen
 - Ljubljana: $2 \cdot 10^{15} n_{eq}/cm^2$
 - KIT: $6 \cdot 10^{14} \, n_{eq} / cm^2$
- Schwelle: 2500 e Rauschen: 170 e
- Für beide Fluenzen volle CCE erreichbar (Band: korrelierte Unsicherheiten)

Tuning

Überblick über die SLID-Verbindungseffizienzen

- Zahl der unverbundenen Kanäle steigt zur Wafermitte auf Grund nicht perfekt geöffneter BCB-Passivierung.
- $\bullet\,$ Stabil nach Bestrahlung bis zu $2\cdot 10^{15}\,n_{eq}/cm^2$ und thermischen Zyklen.

Grund: BCB-Passivierungs-Öffnung

Die Passivierung muss geöffnet werden, um eine Verbindung zwischen Chip und Sensor zu ermöglichen. Dieser Prozessschritt ist nicht vollständig erfolgt.

Inter-Chip Vias (ICV) auf ATLAS Chips

 (SF_6)

Passivation (C₄ F₈)

Start of second etch

Second etch continues

- Via-Ätzung im Bosch-Prozess.
- 2 Wolframfüllung der Vias
- Oünnen des Chips zur Zieldicke.
- SLID-Verbindung.
- Erste Ätzversuche auf Test-Wafer erfolgreich.
- Mai: Ätzen des Chip-Wafers

EMFT erreicht aspect ratios von: 8:1 (Wichtig für Einzelpixelverbindungen).

Philipp Weigell (MPI für Physik)

Zusammenfassung & Pläne

Zusammenfassung

- Erste Single Chip Module mit SLID Verbindungen zeigen gute Eigenschaften:
 - Geringe Leckströme & hohe Durchbruchspannungen
 - Gesammelte Ladung wie erwartet
 - Hohes CCE nach Bestrahlung
- Trend unverbundener Kanäle zur Wafermitte auf Grund von fehlenden BCB-Passivierungs-Öffnungen → d. h. nicht auf Grund der Verbindungstechnologie!
- Erste ICVs auf Test-Wafer erfolgreich

Pläne

- Bestrahlung bis zu $\phi = 10^{16} \, n_{eq/cm^2}$
- Demonstrationsmodul mit SLID und ICV