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Germanium detectors

o Used in spectroscopy, gamma ray tracking, Ov35 experiments

@ Segmentation provides granularity: helps to distinguish
single-segment events (signal-like) from multi-segment events
(background-like) and to localize events

@ Analysis of pulse shapes: collected charge pulses differ depending on
event topology; simulation may be involved

Features:

@ Pulses and mirror pulses, talks by S. Irlbeck and B. Donmez

o Crystallographic axes, this talk
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Segmented germanium detectors

Inner 210 mm
outer 75 mm
height 70 mm;

3z x 6¢-segmentation;

High-purity:
Pimp ~ 0.45 - 100 /cm?3:

1 ion per ~ 1013
germanium ions.

Radial electrical field

Operational voltage:
2000V and higher.
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Effect of anisotropy

e Electrical field lines
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Effect of anisotropy

- Electrical field lines

- - -~ Crystallographic axes
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Effect of anisotropy

e Electrical field lines
- - -~ Crystallographic axes

——— Drift trajectories
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Effect of anisotropy
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Effect of anisotropy: conclusion

Segmentation: physical # geometrical.
Blame anisotropy!

When simulation is supposed to describe data: we
need to know the axes orientation.
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Effect of anisotropy: conclusion

Segmentation: physical # geometrical.
Blame anisotropy!

When simulation is supposed to describe data: we
need to know the axes orientation.

Drifting charge cloud of Ov 33 event has g ~2 mm:
spread at r = 2.5cm is 5°.
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Vacuum cryostat K1
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Effect of anisotropy

Energy deposits from a v source located homogeneous in ¢,
Cobalt-60:
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Simulation
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Measurements
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Extraction method: procedure

Q Vary (j)f"l”l’m in 1°steps;

@ For each ?"1”170> a test statistic € is calculated;
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Extraction method: procedure

© Dependence of € on ?’1'7110> is a smooth function;
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Extraction method: procedure

Q ¢ ( ?"1”17())) is fitted with a second order polynomial;

@ The minimum of the fit = ¢(110).
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Fit on test statistic
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Results and comparison

Method

Value [degree]

True value *

P(110) = —0.2° £ 0.4°(stat.) £ 3°(syst.)

Source on top

ity =1 £ 1(stat) £ 0 oy

*
Obtained using a reference method

Rise time [ns]
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Extraction method: variations

o Various alternatives may have different qualities of the result:
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Extraction method: variations

o Various alternatives may have different qualities of the result:
o Different layers of the detector (top, middle, bottom);
o Different lines of a source:

@ %0Co: 1.17MeV; 1.13MeV;
Q 28TI: 0.58 MeV; 2.61 MeV;

o Different source positions: top, side.
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Extraction method: variations

o Various alternatives may have different qualities of the result:

o Different layers of the detector (top, middle, bottom);
o Different lines of a source:

@ %0Co: 1.17MeV; 1.13MeV;
Q 28TI: 0.58 MeV; 2.61 MeV;

o Different source positions: top, side.

o Cobalt lines, 1.17 MeV and 1.33 MeV seem to be best suited:

@ High probability of emission from the source;
@ High enough probability to be fully absorbed in a single segment.
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Summary

o In some cases a precise knowledge of the crystallographic axes
orientation in a Ge-detector is required

@ A new method to determine the axes orientation was developed and
tested
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Summary

In some cases a precise knowledge of the crystallographic axes
orientation in a Ge-detector is required

@ A new method to determine the axes orientation was developed and
tested

e \ery sensitive to any imperfection of setup representation in
simulation

e The more data is available, the better: enough data is required to
get satisfactory accuracy
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Summary

orientation in a Ge-detector is required

@ A new method to determine the axes orientation was developed and
tested

e \ery sensitive to any imperfection of setup representation in
simulation

e The more data is available, the better: enough data is required to
get satisfactory accuracy

o No need to move the source, wait and see: much faster than the
reference ¢-scanning method

More details: arXiv:1112.5291 [nucl-ex
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Simulated pulse
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Effect of anisotropy

Energy deposits from a v source located in front of a segment,
Thalium-208 (Thorium-228):
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Effect of anisotropy: occupancy
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