Finding the crystal axes

in a segmented germanium detector

Oleksandr Volynets

Max-Planck-Institute for Physics

DPG Frühjahrstagung Göttingen February 27 – March 2, 2012

Submitted to EPJ C arXiv:1112.5291 [nucl-ex]

Germanium detectors

Germanium detectors have a very good energy resolution.

- Used in spectroscopy, gamma ray tracking, $0
 u\beta\beta$ experiments
- Segmentation provides granularity: helps to distinguish single-segment events (signal-like) from multi-segment events (background-like) and to localize events
- Analysis of pulse shapes: collected charge pulses differ depending on event topology; simulation may be involved

Features:

- Pulses and mirror pulses, talks by S. Irlbeck and B. Dönmez
- Crystallographic axes, this talk

Segmented germanium detectors

Siegfried-II detector:

- Inner Ø10 mm outer Ø75 mm height 70 mm;
- $3z \times 6\phi$ -segmentation;
- High-purity: $\rho_{\rm imp} \sim 0.45 \cdot 10^{10}/{\rm cm}^3$: 1 ion per $\sim 10^{13}$ germanium ions.
- Radial electrical field
- Operational voltage: 2000 V and higher.

Anisotropy

Experimental setups

Axes orientation extraction

Results

Summary

Effect of anisotropy

----- Electrical field lines

Anisotropy

Experimental setups

Axes orientation extraction

Results

Summary

Effect of anisotropy

- ----- Electrical field lines
 - --- Crystallographic axes

Anisotropy

Experimental setups

Axes orientation extraction

Results

Summary

Effect of anisotropy

- ----- Electrical field lines
- --- Crystallographic axes
 - Drift trajectories

Drift velocity of charge carriers

 $\mathbf{v}=\boldsymbol{\mu}\cdot \mathcal{E}$

Mobility μ is a tensor, drift does not follow ${\mathcal E}$

Anisotropy

Experimental setups

Axes orientation extraction

Results

Summary

Effect of anisotropy

- ----- Electrical field lines
- ---- Crystallographic axes
 - Drift trajectories
 - — Segments

Drift velocity of charge carriers

 $\mathbf{v} = \boldsymbol{\mu} \cdot \boldsymbol{\mathcal{E}}$

Mobility μ is a tensor, drift does not follow ${\mathcal E}$

Effect of anisotropy: conclusion

Segmentation: physical \neq geometrical. Blame anisotropy!

When simulation is supposed to describe data: we need to know the axes orientation.

Effect of anisotropy: conclusion

Segmentation: physical \neq geometrical. Blame anisotropy!

When simulation is supposed to describe data: we need to know the axes orientation.

Drifting charge cloud of $0\nu\beta\beta$ event has $\emptyset \simeq 2 \text{ mm}$: spread at r = 2.5 cm is 5°.

Anisotropy

(Experimental setups)

Axes orientation extraction

Results

Summary

Vacuum cryostat K1

Detector in vacuum cooled through a cooling finger at $\mathcal{T}\simeq 90\,\text{K}.$

Effect of anisotropy

Energy deposits from a γ source located homogeneous in $\phi,$ Cobalt-60:

Effect of anisotropy: occupancy

Number of events in segments under the 1.33 MeV peak

Simulation

Number of events in segments under the 1.33 MeV peak

Extraction method: procedure

- () Vary $\phi^{sim}_{\langle 110 \rangle}$ in 1°steps;
- ② For each $\phi^{sim}_{\langle 110 \rangle}$ a test statistic ϵ is calculated;
- **③** Dependence of ϵ on $\phi_{\langle 110 \rangle}^{sim}$ is a smooth function;
- () $\epsilon \left(\phi_{\langle 110 \rangle}^{sim} \right)$ is fitted with a second order polynomial;
- **3** The minimum of the fit $= \phi_{\langle 110 \rangle}$.

(Axes orientation extraction)

Results

Summary

Test statistic

Extraction method: procedure

- **2** For each $\phi_{(110)}^{sim}$ a test statistic ϵ is calculated;
- **③** Dependence of ϵ on $\phi_{\langle 110 \rangle}^{sim}$ is a smooth function;
- (a) $\epsilon\left(\phi_{\langle 110\rangle}^{sim}\right)$ is fitted with a second order polynomial;

Dependence of ϵ on angle parameter $\phi_{(110)}^{sim}$

Extraction method: procedure

-) Vary $\phi_{\langle 110
 angle}^{sum}$ in 1° steps;
- **②** For each $\phi_{\langle 110 \rangle}^{sim}$ a test statistic ϵ is calculated;
- **③** Dependence of ϵ on $\phi_{\langle 110 \rangle}^{sim}$ is a smooth function;
- $\ \ \, \textbf{ o } \ \ \, \epsilon \left(\phi^{\rm sim}_{\langle 110\rangle} \right) \ \ \, \text{is fitted with a second order polynomial;}$
- **(3)** The minimum of the fit = $\phi_{\langle 110 \rangle}$.

Fit on test statistic

Results and comparison

Method	Value [degree]
True value *	$\phi_{\langle 110 angle} = -0.2^\circ \pm 0.4^\circ ({ m stat.}) \pm 3^\circ ({ m syst.})$
Source on top	$\phi^{ extstyle $

* Obtained using a reference method

Extraction method: variations

• Various alternatives may have different qualities of the result:

Extraction method: variations

- Various alternatives may have different qualities of the result:
 - Different layers of the detector (top, middle, bottom);
 - Different lines of a source:
 - ⁶⁰Co: 1.17 MeV; 1.13 MeV;
 - 208 TI: 0.58 MeV; 2.61 MeV;
 - Different source positions: top, side.

(Results)

Summary

Extraction method: variations

- Various alternatives may have different qualities of the result:
 - Different layers of the detector (top, middle, bottom);
 - Different lines of a source:
 - ⁶⁰Co: 1.17 MeV; 1.13 MeV;
 - 208 TI: 0.58 MeV; 2.61 MeV;
 - Different source positions: top, side.
- Cobalt lines, 1.17 MeV and 1.33 MeV seem to be best suited:
 - High probability of emission from the source;
 - I High enough probability to be fully absorbed in a single segment.

- In some cases a precise knowledge of the crystallographic axes orientation in a Ge-detector is required
- A new method to determine the axes orientation was developed and tested

- In some cases a precise knowledge of the crystallographic axes orientation in a Ge-detector is required
- A new method to determine the axes orientation was developed and tested
- Very sensitive to any imperfection of setup representation in simulation
- The more data is available, the better: enough data is required to get satisfactory accuracy

- In some cases a precise knowledge of the crystallographic axes orientation in a Ge-detector is required
- A new method to determine the axes orientation was developed and tested
- Very sensitive to any imperfection of setup representation in simulation
- The more data is available, the better: enough data is required to get satisfactory accuracy
- No need to move the source, wait and see: much faster than the reference ϕ -scanning method

More details: arXiv:1112.5291 [nucl-ex]

Simulated pulse

Segment pulse

Core pulse

Effect of anisotropy

Energy deposits from a γ source located in front of a segment, Thalium-208 (Thorium-228):

Effect of anisotropy: occupancy

Number of events in segments under the 2.61 MeV peak

Simulation

