Measurement of the production cross section for heavy quark jets in association with a W boson with the ATLAS detector at the LHC $\,$

M. Vanadia; supervised by: O. Kortner, H. Kroha

Max-Planck-Institut für Physik

 $1^{\rm st}$ March 2012 - DPG Conference

W + c - quark(s)

- Both W + c and $W + c\overline{c}$ significant
- No c-tagging algorithm available
- 2011 analysis in preparation for W + c exclusive cross section measurement
- $\circ\,$ Main strategy based on muon decays of c-quark and on charge correlation between W and c
- Chance to study $s quark \ pdf$

W + b - quark(s)

- W + b Cabibbo supressed, only $W + b\overline{b}$ observable
- $\circ~$ In 2010 published inclusive cross section measurement W+b+X
- The analysis is based on b-jet tagging algorithms

Requirement	Cut
Lepton transverse momentum p_T	$p_T^l > 20 \ GeV$
Lepton pseudo-rapidity η	$ \eta_l < 2.5$
Neutrino	$p_T^{ u} > 25 \mathrm{GeV}$
W mass	$m_T > 40 {\rm GeV}$
Jet transverse momentum p_T	$p_T^j > 25 { m GeV}$
Jet rapidity y	$ y^j < 2.1$
Jet Multiplicity	$n^j \leq 2$
b-Jet Multiplicity	$nb^j \ge 1$
Jet Isolation	$\Delta R(l, jet) > 0.5$

Measurement performed

- Muon and Electron decays of W boson
- 1, 2 jets bin and combined
- 2010 data, $\int \mathcal{L} = 35 \ pb^{-1}$

Truth b-jet definition

Jet matched in $\sqrt{\Delta\eta^2+\Delta\phi^2} < 0.3 \text{ with}$ b parton with $p_T > 5 \text{ GeV}$

Physics process	Generator	$\sigma \cdot \mathrm{BR}$ (nb)		
$W \rightarrow \ell \nu + \text{jets} \ (0 \le N_{parton} \le 5)$	ALPGEN 2.13	10.46	NNLO	
$Z \rightarrow \ell \ell + \text{jets} \ (m_{\ell \ell} > 40 \text{ GeV}, \ 0 \le N_{parton} \le 5)$	ALPGEN 2.13	1.07	NNLO	
$t\bar{t}$	MC@NLO 3.1.3.1	89.7×10^{-3}	approx. NNLO	
Single-top (s-channel)	MC@NLO	4.3×10^{-4}	NLO	
Single-top (t-channel)	AcerMC 2.0	6.34×10^{-3}	NLO	
Single-top (Wt)	AcerMC 2.0	13.1×10^{-3}	NLO	
WW	HERWIG 6.510	44.9×10^{-3}	NLO	
WZ	HERWIG 6.510	18.5×10^{-3}	NLO	
ZZ	HERWIG 6.510	5.96×10^{-3}	NLO	

QCD is estimated on data

W + b - jet: event selection

2010 b-jet tagging

- Relies on long life time of b-hadrons
 - \rightarrow fly for $\approx mm$
- The long life time makes it possible to reconstruct secondary vertices

. 1

 \rightarrow ID resolution $\approx 10 \mu m$

tion and selection	Expected number of events in the muon channel						
	Source	1-jet	2-jet (1 b-tag)	2-jet (2 b-tag)			
agnetic calibration	W+b+X	24.8	25.9	1.6			
-	W+c+X	108.4	44.9	0.4			
tr algorithm used for	W+light	38.2	20.2	0			
iction	Total W+Jet	171.4	91	2			
ts with $p_T > 25 GeV$,	$t\overline{t}$	10	39.7	7.4			
1, > 75% momentum coming	SingleTop	17.2	23.1	2.5			
mary vertex	QCD	8	9.9	-0.1			
L b-jet, tagged using secondary sociation algorithm iciency working point)	Z+Jet	3.7	2.4	0.2			
	Diboson	0.2	0.1	0			
	Total Predicted	210.6	166.2	12.1			
	Data	261	217	13			

Jet reconstruc

- Electrom
- anti H reconstru
- 1 or 2 jet |y| < 2.from prin
- Exactly 1 vertex as (50% eff

W + b - jet: the secondary vertex mass fit

Secondary vertex mass fit in the electron channel, 1 jet bin

Secondary vertex mass $(SV0_{mass})$

 Secondary vertex produced by B hadrons have higher masses

Fit to $SV0_{mass}$

- SV0_{mass} distributions produced on simulation for backgrounds and signal
- QCD $SV0_{mass}$ distribution produced on data
- The distributions are validated in control regions
- Input to the fit: all non W+jet backgrounds normalizations
- Output of the fit: W+jet flavour fractions

Background normalizations

 $t\bar{t}$ and QCD estimated with data driven method. For single t not enough data, estimated on simulations. Other BGs are small, estimated on simulations.

$$\sigma_{W+b-\text{jet}} \times \mathcal{B}(W \to \ell \nu) = \frac{(n^{tag} - n_{\text{non}-WBG}) \cdot f_{W+b-\text{jet}}}{\int \mathcal{L} \cdot \mathcal{U}}$$

- $n_{\mathrm{non}-\mathrm{WBG}}$ is the estimated number of non-Wjet events
- $f_{W+b-\text{jet}}$ is the fitted fraction of W+b-jet events
- $\int \mathcal{L}$ is the integrated luminosity
- U is the unfolding factor, ie the fraction of events in the phase space which passes the analysis selection

Channel	Jet bin	$\mathcal{U}_{e(\mu)}$ (%)
Electrone	1	16.32±0.84
Electrons	2	19.94±0.83
Muons	1	22.6±1.0
	2	27.8±1.0

Theory predictions: NLO QCD predictions for W + 1 jet and W + 2 jet production with at least one b jet at the 7 TeV LHC; arXiv:1107.3714

W + c - jet: analysis on 2011 data

- Backgrounds are charge-blind, and can be mostly rejected using soft-muon and W-lepton charge anticorrelation
- To increase the sensitivity of the measurement, the backgrounds must be reduced as much as possible before using the anticorrelation method
- The background due to soft muons in light jets can be reduced cutting on some quantities (see next slide)

W + c - jet: the soft muon tagger

The Soft Muon Tagger

- The selected soft muons in jets are Combined Muons, a combination of the Inner Detector and the Muon Spectrometer tracks
- The χ^2_{match} of the combination can be used to separate $b, c \rightarrow \mu + X$ from $\pi, K \rightarrow \mu + X$ decays $\rightarrow \pi, K$ have long life time, they decay late in the Inner Detector, producing track combinations with higher χ^2_{match} values
- The tagger cuts at $\chi^2_{match}/NDOF < 3.2$ to reject light jets ($\epsilon_b \approx 10\%$, $R_{light} \approx 470$)
- A data driven estimation of the performance of the tagger is needed for the analysis
- $\,\circ\,$ Efficiency scale factors evaluation using $Z \to \mu \mu$ events is being finalised in these days

MC simulation with ideal alignment

MC simulation test with realistic alignment

W + b - jet cross section measurement

A measurement was published using the 2010 ATLAS dataset (35pb⁻¹) arXiv:1109.1470v2 [hep-ex]
1-jet bin: σ^{Fiducial}(W → lν+ ≥ 1 b - jet) = 4.5 ± 1.3_{stat} ± 1.3_{syst} pb
2-jet bin: σ^{Fiducial}(W → lν+ ≥ 1 b - jet) = 5.7 ± 1.3_{stat} ± 1.4_{syst} pb
combined: σ^{Fiducial}(W → lν+ ≥ 1 b - jet) = 10.2 ± 1.9_{stat} ± 2.6_{syst} pb
The analysis will be extended with the 2011 dataset

W + c - jet cross section measurement

- $\circ\,$ A method for a W+c-jet cross section measurement was presented
- $_{\odot}\,$ The analysis will be performed on full $4.7 fb^{-1}$ 2011 dataset

BACKUP

Subdetectors

- Inner Detector (solenoidal field)
 - Silicon tracker up to $|\eta| < 2.5$

• Calorimeters

- $\bullet~{\rm EM}$ up to $|\eta|<3.2$
 - Liquid Argon sampling calorimeter
- Hadronic up to $|\eta| < 4.9$
 - Tile sampling calorimeter
 - Liquid Argon Calorimeter (forward)
- Muon Spectrometer (toroidal field)
 - Tracking up to
 - $|\eta| < 2.7$
 - Trigger up to $|\eta| < 2.4$

W + b - jet: $t\overline{t}$ background, muon channel

The method

- Select events with ≥ 4 jets, ≥ 1 b-tagged jet
- $\circ\,$ This defines a control region, dominated by $t\bar{t}$ events
- Apply the secondary vertex mass fit to extract the $t\bar{t}$ fraction
- Extrapolate back to signal region (1 or 2 jets, 1 b-tagged jet) using MC simulations prediction
- Most uncertainties cancels out (b tagging uncertainty above all)
- Alternative method (tag-counting) gives compatible results

W + b - jet: QCD background, electron channel

Multijet QCD backgrounds

- No intrinsic transverse momentum imbalance
- · Contribution due to limited resolution of detector and mis-reconstructed objects

Electron channel

- Look at E_{miss}^T on full range after all other cuts
- Produce one template shape on simulation for EW
- Produce one template shape on data for QCD in a QCD enriched sample (non isolated electrons)
- Fit the templates to obtain QCD normalization on data
- Good agreement between data and fit results

Multijet QCD backgrounds

- No intrinsic transverse momentum imbalance
- · Contribution due to limited resolution of detector and mis-reconstructed objects

Muon channel: the matrix method

Two samples defined, with a loose or tight isolation requirement real= prompt muons from W,Z fake= non-isolated or mis-identificated muons
$$\begin{split} N^{loose} &= N^{loose}_{real} + N^{loose}_{fake} \\ N^{tight} &= N^{tight}_{real} + N^{tight}_{fake} = \epsilon_{real} N^{loose}_{real} + \epsilon_{fake} N^{loose}_{fake} \\ \\ \text{Measure } \epsilon_{real} = \text{and } \epsilon_{fake} \text{ on data, calculate} \\ N^{tight}_{fake} &= \frac{\epsilon_{fake}}{\epsilon_{real} - \epsilon_{fake}} (\epsilon_{real} N^{loose} - N^{tight}) \end{split}$$

The measurement

- $\circ~\epsilon_{real}$ measured with tag and probe method on data, using $Z \to \mu \mu$ events
- ϵ_{fake} estimated in a QCD enriched sample, $M_T^W < 20 \ GeV$

Validation of QCD background normalization

Validation of $t\overline{t}$ background normalization

Invariant mass of the W+b-jet system in the electron channel, combined 1+2 jet bins

Number of b-tagged jets in the muon channel, combined 1+2 jet bins

Fit results -1

Electron channel, 1 (top) and 2 (bottom) jets

Muon channel, 1 (top) and 2 (bottom) jets

Given the non W-jets background normalizations as input, the secondary vertex mass fit extracts the W+b, W+c, W+light fractions

	μ				е				
		1-jet		2-jet		1-jet	2-jet		
	MC	Fit result	MC	Fit result	MC	Fit result	MC	Fit result	
QCD multi-jet	-	8	-	9.9	-	10.4	-	5.8	
W+b	24.8	28.4 ± 13.0	25.9	62.4 ± 17.7	17.9	32.6 ± 13.1	18.9	37.7 ± 14.4	
W+c	108.4	169.6 ± 19.5	44.9	54.1 ± 18.6	84.3	104.7 ± 17.5	35.5	24.0 ± 14.7	
W+light	38.2	21.9 ± 10.4	20.2	21.2 ± 9.9	30.3	22.3 ± 10.1	17.2	14.4 ± 7.6	
tī	10.0	11.0	39.7	43.7	7.6	8.1	31.6	33.4	
single top	17.2	-	23.1	-	13.6	-	18.4	-	
WW/WZ	0.2	-	0.1	-	1.3	-	1.6	-	
$Z \to \ell \ell$	3.7	-	2.4	-	0.6	-	0.5	-	

Cross Section [pb]									
	1 jet			2 jet			1+2 jet		
	μ	e	µ& e	μ	e	µ& e	μ	e	µ& e
Measured	3.5	5.5	4.5	6.2	5.1	5.7	9.7	10.7	10.2
Syst. ⊕ Stat.	1.9	2.7	1.8	2.3	2.4	1.9	3.4	4.1	3.2
Statistical	1.6	2.1	1.3	1.8	1.9	1.3	2.4	2.8	1.9
Systematic	1.1	1.7	1.3	1.5	1.5	1.4	2.4	3.0	2.6
	Systematics breakdown %								
b-tag efficiency & template shape	22	19	19	14	16	14	16	16	16
Jet uncertainties	9	6	7	7	10	8	7	7	7
QCD background	7	18	11	4	8	4	5	13	7
Missing Energy	1	1	1	2	2	1	1	1	1
tī & single top	14	9	11	12	17	14	12	12	12
Lepton uncertainties	3	5	3	2	5	3	2	5	3
Model dependence	9	8	9	10	10	10	9	9	9
Pile-up	5	4	5	3	3	3	3	4	3
Luminosity	5	5	5	4	5	5	5	5	5

- For each systematic variation considered, the full chain of the analysis is repeated
- Main systematics
 - b-jet efficiency: the limiting systematics. It affects W+b unfolding and single top estimate in correlated way. It is reduced thanks to the data driven $t\bar{t}$ estimate.
 - jet energy scale has the biggest impact in the $t\bar{t}$ estimate.
 - single top and top pair theory uncertainties are significant
- Signal modeling systematics were taken into account
- b tagging efficiency, therefore the unfolding, depends strongly
 - on b-jet momentum
 - on the angle between the two b partons (if they end in the same jet, the efficiency is higher)
- · An estimate on this was produced varying the contribution to signal of
 - $g \rightarrow b\overline{b}$
 - $q\overline{q} \rightarrow Wb\overline{b}$