$\alpha\textsc{-}\mathsf{Background}$ characterization for the GERDA experiment

<u>Neslihan Becerici-Schmidt</u>, Allen Caldwell and Béla Majorovits for the GERDA Collaboration

Max-Planck-Institut für Physik, München

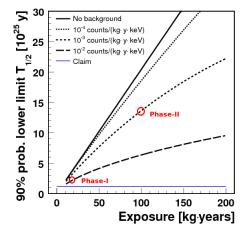
DPG Frühjahrstagung, Göttingen, 28 February 2012

Outline:

- Motivation.
- GERDA Phase-I data.
- Analysis of α -background.
- Implications of α -background.
- Summary.

Motivation

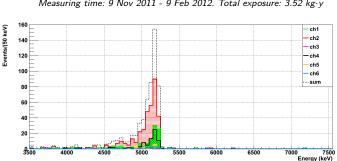
GERDA experiment is searching for neutrinoless double beta ($0\nu\beta\beta$) decay of ⁷⁶Ge, using an array of HPGe detectors enriched in ⁷⁶Ge isotope.


To achieve a higher sensitivity on the $\mathbf{T}_{1/2}$:

 \Rightarrow Increase the exposure M (mass of Ge) \times t (measuring time)

 $\Rightarrow \text{Lower the background index}$ BI: number of events in ROI (Q_{ββ} ± Δ*E*) per 1 kg Germanium, per 1 year of measuring time, per 1 keV energy window

GERDA Phase-I: Test the claim **GERDA Phase-II:** Improve sensitivity on $T_{1/2}$ \triangleright Increased exposure \triangleright An order-of-magnitude lower BI

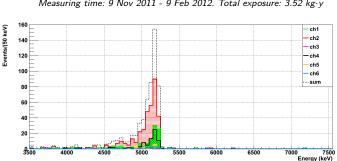

Understanding of the background is of major importance to suppress it and to further mitigate it for GERDA Phase-II.

[Caldwell,Kröninger;Phys. Rev. D74, 092003 (2006)]

GERDA Phase-I data

High-energy region of the GERDA background spectrum

Measured background spectrum of enriched detectors (ch1-ch6) in Phase-I. Measuring time: 9 Nov 2011 - 9 Feb 2012. Total exposure: 3.52 kg·y


High-energy (E > 3.5 MeV) events $\rightarrow \alpha$ -candidates: Not muons; show energy in single detector; energy above γ , β bg from natural radioactivity.

Quantify background contribution from degraded α 's in the ROI, i.e., around $Q_{\beta\beta}=2.039$ MeV.

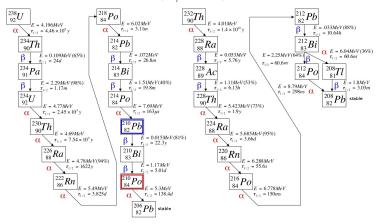
 \Rightarrow Find a model that describes the data

GERDA Phase-I data

High-energy region of the GERDA background spectrum

Measured background spectrum of enriched detectors (ch1-ch6) in Phase-I. Measuring time: 9 Nov 2011 - 9 Feb 2012. Total exposure: 3.52 kg·y

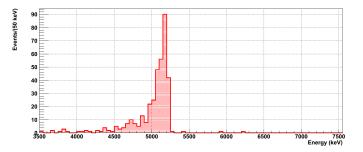
▷ Peak around 5.2 MeV


• α -events at detector surfaces are subject to energy loss and straggling in the dead layers (contacts at the surface of the detectors)

\Rightarrow result in a peak structure

- α-events originate in materials external to the detector result in a broad continuum of events.
- \rhd Counting rates differ from detector to detector \Rightarrow detector contamination

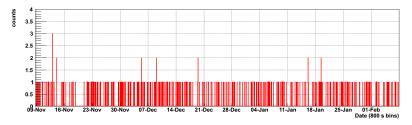
Model: ²¹⁰Pb surface contamination


²²²Rn-decays at detector surfaces during an exposure to air \rightarrow implantation of ²²²Rn-daughters ²¹⁰Pb implanted into the surface (T_{1/2} = 22 y) \rightarrow steady supply of ²¹⁰Po α -decays (E=5.3 MeV)

 210 Pb surface contamination \Rightarrow expect 5.3 MeV alphas from 210 Po at a constant rate (degraded spectrum at the dead layer)

Start with the detector that shows the highest counting rate at high-energy region: ch2

Measured background spectrum of ch2 in Phase-I. Measuring time: 9 Nov 2011 - 9 Feb 2012. Total exposure: 0.58 kg·y

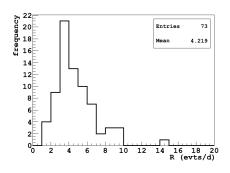


Assumption: Majority of high-energy events come from ²¹⁰Po α -decays (E = 5.3 MeV) at the surface, due to an initial ²¹⁰Pb contamination.

- Expect: Poisson process with a constant rate of R = 4.2 events/day
- Reproduce the energy spectrum with a dedicated MC simulation

Analysis of $\alpha\text{-}\mathsf{background}$

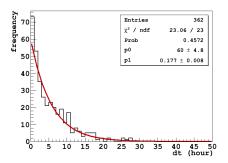
Counting rate of high-energy events from ch2 in dt=800 second time intervals. Mean rate: 0.039 events/800 s


If random events happen with a mean number of occurences in a given time interval, then the number of occurrences within that time interval should follow a Poisson distribution:

n: number of events in 800 s intervals	$P(n \nu)$: Poisson prob. to observe n events given the rate ν	Expected number of occurences	Observed number of occurences
0	0.96175	9123.2	9122
1	0.03751	355.8	357
2	0.00073	6.9	6
3	0.00001	0.1	1

Observed numbers consistent with expectations from a Poisson process.

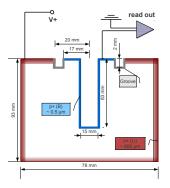
Analysis of $\alpha\text{-}\mathsf{background}$


Daily count rate distribution of high-energy events from ch2. Mean rate: 4.219 events/day (corrected for data-taking interruptions by excluding the days affected by the interruptions).

n (events)	P(n u)	Expected	Observed
0	0.014713	1.1	0
1	0.062076	4.5	4
2	0.130949	9.6	9
3	0.184157	13.4	21
4	0.194240	14.2	13
5	0.163900	12.0	10
6	0.115249	8.4	7
_3≤n≤6	0.657537	48.0	51
7	0.069462	5.1	2
8	0.036633	2.7	3
9	0.017173	1.3	3
≥9	0.028622	2.1	4
14	0.000096	$7 \cdot 10^{-3}$	1

If random events happen continuously with a constant mean rate, then the time between successive events should follow an exponential distribution:

Distribution of time difference between successive high-energy events from ch2.



Events happen independently at a constant rate as expected from $^{210}\mathrm{Po}~\alpha\text{-decays}$ at a constant rate, due to an initial $^{210}\mathrm{Pb}$ surface contamination

Simulation of $^{210}\mathrm{Po}~\alpha\text{-decays}$ at detector surfaces

Simulation of 210 Po background is performed using *MaGe*, a Monte-Carlo package based upon Geant4 and ROOT libraries (developed by Majorana and GERDA collaborations).

p-type HPGe detector, cylindrical closed-end coaxial geometry

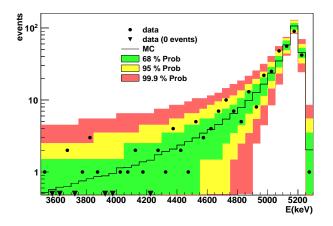
 $^{210}\mathrm{Po}~\alpha\text{-decays}$ generated at the p+ contact assuming three different contamination scenarios:

1) on the surface, vary the dead layer (DL) thickness

2) inside an implantation depth assuming a flat density profile, vary the depth and the DL thickness

3) inside the whole DL assuming an exponential density profile: $f(z) = C \cdot e^{-Rz}$, vary the exponent and the DL thickness

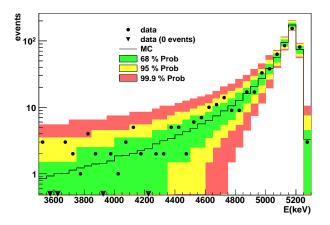
To compare with data, the resultant energy spectra were turned into probability density functions and used in maximum-likelihood fit:


$$P(D|N_{pDL}) = \prod_{i=1}^{Nbins} \frac{e^{-\nu_i} \nu_i^{n_i}}{n_i!} \quad m$$

 n_i , ν_i : observed and expected number of events in the bins

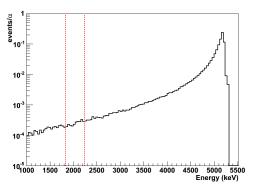
Comparison of data with simulation

Maximum-likelihood fit of the experimental spectrum from ch2 in 3.5 MeV-5.3 MeV range.


Assumption: All events come from ²¹⁰Po α -decays inside a dead layer of 500 nm with an exponentially decreasing density profile

Comparison of data with simulation

Maximum-likelihood fit of the experimental spectrum from ch1+ch2+ch3+ch4+ch5+ch6 in 3.5 MeV-5.3 MeV range.


Assumption: All events come from ²¹⁰Po α -decays inside a dead layer of 500 nm with an exponentially decreasing density profile

Implication of background from surface ²¹⁰Po alphas

Model describes the high-energy spectrum observed in enriched detectors: 210 Po α -decays inside the dead layer (d=500nm) on surface with an exponentially decreasing density profile

Contribution of degraded ²¹⁰Po alphas in the ROI ($Q_{\beta\beta\pm} \pm 200 \text{ keV}$): $\rightarrow 8.8 \cdot 10^{-6} \text{ counts/keV}$ per measured α -event in the peak (5.0 MeV-5.3 MeV)

For the enriched detectors (ch1-ch6):

 \bullet Bg contribution of degraded $^{210}\mathrm{Po}~\alpha\mathrm{'s}$

ightarrow BI $_{lpha}$ = 10⁻³ counts/(kg·y·keV)

• Total background index

 \rightarrow BI_{tot} = 1.6·10⁻² counts/(kg·y·keV)

in the ROI ($Q_{\beta\beta}\pm$ 200 keV) in Phase-I (exposure: 3.52 kg·y)

 \Rightarrow about 6% contribution from α 's

Summary & Discussion

Summary:

- Alpha background observed in GERDA Phase-I analyzed.
 - \triangleright Majority of high-energy events assumed to originate from ²¹⁰Po α -decays in dead layer, due to an initial ²¹⁰Pb detector surface contamination

> Time behavior analysis: results consistent with a Poisson process

 \triangleright MC simulation reproduce the energy spectrum (different models and parameters investigated)

 \triangleright Background contribution from degraded surface alphas in the ROI for enriched detectors estimated: BI_{α} = 10⁻³ counts/(kg·y·keV), about 6% of the total BI

Discussion:

- Implications for GERDA Phase-II:
 - \triangleright BI goal of Phase-II: 10⁻³ counts/(kg·y·keV)

 $\rightarrow \alpha \text{-}\mathsf{background}$ can become an important component

However,

- \triangleright p-type point contact BEGe detectors will be used in Phase-II
 - \rightarrow Relatively much smaller p+ contact & good surface event discrimination power with the help of PSD method (see the next talk from Tobias Bode).