Studies on afterpulses and saturation of SiPM with fast UV light pulses

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

28/02/2012

Wednesday, February 22, 12

Marco Szalay

Table Of Contents

- Motivations
- The T3B experiment
- The WaveForm Decomposition algorithm
- The UV Led setup for Saturation and afterpulses measurements
- First results
 - SiPM Saturation Curve
 - Time Distribution of SiPM signals
- Future plans

Marco Szalay

Motivation

- Understand the saturation behavior of a SiPM (MPPC-50P Hamamatsu)
- Investigate the time structure of the SiPM signal on the test bench to
 - understand the time behavior of detector systems
 - disentangle afterpulses from signal

reconstruct the time structure of energy deposition in an hadronic shower

Marco Szalay

Marco Szalay

Marco Szalay

5

Marco Szalay

Wednesday, February 22, 12

5

Marco Szalay

Wednesday, February 22, 12

Marco Szalay

Wednesday, February 22, 12

Marco Szalay

6

Marco Szalay

Marco Szalay

6

Marco Szalay

Marco Szalay

Led Emission Linearity

Saturation Pmt vs SiPM The PMT has a very linear response so 70 we can compare it to the SiPM signal 60 50 Mean values out of 1500 events per point 40

SiPM # of 1pe

Saturation Pmt vs SiPM SiPM # of 1pe The PMT has a very linear response so 70 we can compare it to the SiPM signal 60 50 Mean values out of 1500 events per point 40 30 **Saturation Correction** 20 10 ×10⁻¹² 0 0.5 2.5 3 1.5 3.5 0 2 4.5 4 PMT Integrated Signal (V x s) 28/02/2012 Marco Szalay

Saturation Pmt vs SiPM SiPM # of 1pe The PMT has a very linear response so 70 we can compare it to the SiPM signal 60 50 Mean values out of 1500 events per point 40 30 **Saturation Correction** 20 10 ×10⁻¹² 0 0.5 2.5 3 1.5 3.5 2 4.5 0 4 PMT Integrated Signal (V x s) 28/02/2012 Marco Szalay

Saturation Pmt vs SiPM SiPM # of 1pe The PMT has a very linear response so 70 we can compare it to the SiPM signal 60 50 Mean values out of 1500 events per point 40 30 **Saturation Correction** 20 10 ×10⁻¹² 0 0.5 2.5 3 1.5 3.5 2 4.5 0 4 PMT Integrated Signal (V x s) 28/02/2012 Marco Szalay

Saturation Pmt vs SiPM The PMT has a very linear response so 70 we can compare it to the SiPM signal 60 50 Mean values out of 1500 events per point 40 30 **Saturation Correction** 20 10 ×10⁻¹²

0.5

0

0

Marco Szalay

SiPM # of 1pe

2

1.5

2.5

3

3.5

4.5

4

PMT Integrated Signal (V x s)

Saturation Pmt vs SiPM SiPM # of 1pe The PMT has a very linear response so 70 we can compare it to the SiPM signal 60 50 Mean values out of 1500 events per point 40 30 **Saturation Correction** 20 but the SiPM surface has to be 10 homogeneously illuminated ×10⁻¹² 0 2.5 3 0.5 1.5 3.5 2 4.5 PMT Integrated Signal (V x s)

8

28/02/2012

Marco Szalay

Marco Szalay

Marco Szalay

The light emitted from the fibers is not homogeneous!

Marco Szalay

The light emitted from the fibers is not homogeneous! We need a way to cancel out the ring pattern and get an homogeneous light distribution.

Marco Szalay

Marco Szalay

Without Lens

With Lens

Marco Szalay

Marco Szalay

Marco Szalay

Wednesday, February 22, 12

Marco Szalay

Saturation 2

SiPM vs Light Intensity

Wednesday, February 22, 12

Coupling a T3B Tile

Marco Szalay

Coupling a T3B Tile

Marco Szalay

Coupling a T3B Tile

Marco Szalay

Time Distribution - No Tile

Time Distribution - No Tile

Time Distribution - No Tile

Time Distribution - With Tile

Time Distribution - With Tile

Time Distribution - With Tile

Comparison

Without Tile

Marco Szalay

Wednesday, February 22, 12

With Tile

Steps for the Future

- Improve the saturation curves to an higher number of pixel firing (probably using the integral of the raw waveform as a complement to the waveform decomposition algorithm)
- Investigate in depth late components like e.g. afterpulses, normalizing the SiPM signal with the PMT signal
- Compare the LED results with the muon data taken from T3B during beam time

Marco Szalay

Backup

Marco Szalay

Light Splitter

- Precise alignement
- Tilting capability to get rid of some strange reflections in the fibers
- Easier
 reproducibility of the runs
- ETA: early march

Marco Szalay

Clipping

Clipping 2

Marco Szalay

Wednesday, February 22, 12