Study of detection efficiency distribution and areal homogeneity of SiPMs

Michal Tesař, Christian Jendrysik, Frank Simon, Jelena Ninković, Hans-Günther Moser, Rainer Richter

Max Planck Intitute for Physics

DPG Göttingen 28.2.2012

Outline

2 The CALICE prototype

3 SiPM basics

4 Measurement results

Future linear e⁺e⁻ collider experiments

- two future machines are in development
 - ILC, up to $\sqrt{s} = 1$ TeV, (31 km length)
 - CLIC, up to $\sqrt{s} = 3$ TeV, (48 km length)
- physics program:
 - precision studies within standard model
 - search and study of physics beyond standard model
- these tasks require high jet energy resolution
- "particle flow" concept will be used to reconstruct the jets
- to meet these demands, highly granular ECAL and HCAL is needed
- ⇒ classical PMTs must be replaced by SiPMs

The International Large Detector (ILD)

 the CALICE test detector was built to study performance of the new calorimeter concept

Focus: HCAL

- 38 active layers interleaved with 2 cm stainless steel (tungsten) plates
- each active layer is assembled of combination 3×3, 6×6 and 12×12 cm²
 0.5 cm thick scintillator tiles coupled with a SiPM
- total 7608 channels

The CALICE prototype

1 m³ HCAL prototype

new scintillator concept

SiPM and scintillator size comparison

The CALICE prototype

one scintillator layer of the CALICE

new scintillator concept

SiPM and scintillator size comparison

Silicon Photomultipliers (SiPM, MPPC, GAPD, ...)

- silicon photon detectors made of an array of avalanche photodiodes (APD)
- APDs are operated in Geiger mode (slightly above breakdown voltage)
- incident photon induces an avalanche
- the avalanche is quenched by a decrease of bias voltage over a quenching resistor
- all cells are connected in parallel
- different implementations of the quenching resistor are being used

Silicon Photomultipliers (SiPM, MPPC, GAPD, ...)

- silicon photon detectors made of an array of avalanche photodiodes (APD)
- APDs are operated in Geiger mode (slightly above breakdown voltage)
- incident photon induces an avalanche
- the avalanche is quenched by a decrease of bias voltage over a quenching resistor
- all cells are connected in parallel
- different implementations of the quenching resistor are being used

Advantages

- small dimensions (usually ~ 1×1 mm²)
- insensitivity to magnetic field
- low supply voltage (tens of volts)
- single photon counting capability
- high gain

Drawbacks

- low radiation tolerance
- high thermal noise rate (dark count)
- optical crosstalk
- afterpulsing

Ultimate goal of our study

Discovering of sensitivity distribution of a SiPM over its area and calculating further characteristics out of this data

- light from an LED is focused to a small point
- the LED is pulsed
- SiPM response is measured in coincidence with LED pulses
- the light beam is driven through pixel matrix in discrete steps
- a sensitivity scan of a 1 \times 1 mm² device with 1 μm step size can be completed in \sim 40 hours

Results: Hamamatsu (MPPC) (25 µm pitch)

sensitive area is obviously significantly reduced by the quenching resistor placed on surface of the device

Photo + photoemission image

Results: Hamamatsu (MPPC) (50 µm pitch)

sensitive area is obviously significantly reduced by the quenching resistor placed on surface of the device

Photo + photoemission image

Results: Hamamatsu MPPC (50 µm pixel pitch)

pure 1 p.e. map

integrated efficiency map

crosstalk probability map

Hamamatsu MPPC 50 µm pitch (CALICE type) study results

- detection efficiency patterns change with over-bias voltage negligibly
- geometrical fill-factor does not change with over-bias voltage
- edge breakdown observed, disappears with increasing over-bias voltage
- $\bullet\,$ much better performance in comparison with SensL SPMs and MPPC 25 μm pitch

quantity	value
PDE spread	8 %
fill-factor spread	11 %
crosstalk probability	18 %
geometrical fill-factor	55 %

Table: Hamamatsu 50 μm pitch (CALICE type) measured characteristics

Results: SiMPI (130 µm pitch)

no surface structures inside of a pixel \Rightarrow higher possible geometrical fill-factor

Measurements done at room temperature. Due to high dark count of 2nd iteration series, it would be better to cool the devices down.

Summary:

- detector systems for future linear e^+e^- colliders are in development
- future calorimeters will use scintillators coupled with SiPMs
- the SiPMs must be evaluated, understood and improved
- the sensitivity scan is a good tool for that

Achievements:

- setup for uniformity characterization of SiPMs has been developed
- measurement provides relative sensitivity and crosstalk probability map
- fill factor and other homogeneity measures can be determined
- successful tests of different devices have been done