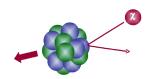
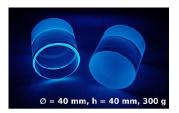
Blind CRESST Data Analysis in the light of Time-Dependent Noise

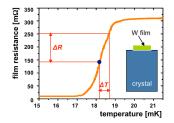
Florian Reindl

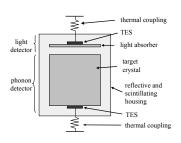
Max-Planck-Institut für Physik München


DPG Frühjahrstagung - Göttingen Feb 28, 2012

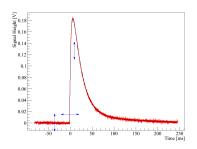

Direct Dark Matter Search with the CRESST Experiment

CRESST


 aims for a WIMP detection via their elastic scattering off nuclei.

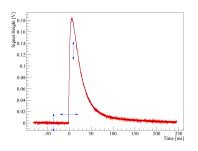

uses scintillating CaWO₄ crystals as target material

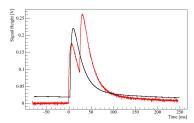
CRESST Detectors


- particle interactions in the crystal excite phonons
- temperature rise detected with Transition Edge Sensor (TES)
- ⇒ measurement of deposited energy (few keV)

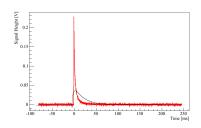
detector module:

simultaneous measurement of


- energy in crystal E
- scintillation light L
- \Rightarrow active background discrimination by light yield $(\frac{L}{E})$


Standard Pulse Fit & RMS

- thermal pulse: fit with standard event
- \Rightarrow Amplitude \rightarrow Energy
- ⇒ "RMS of Fit [V]"
 - The RMS is a generic parameter well suited to find events with different pulse shapes.


Standard Pulse Fit & RMS

pile-up

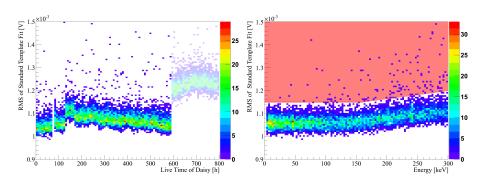
- thermal pulse: fit with standard event
- \Rightarrow Amplitude \rightarrow Energy
- \Rightarrow "RMS of Fit [V]"
 - The RMS is a generic parameter well suited to find events with different pulse shapes.

direct hit of thermometer carrier

Blind Analysis & Contributions to the RMS

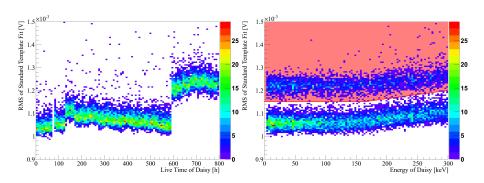
Blind Analysis

- \bullet Use small subset of whole data set to develop cuts \to Training Set
- ullet Application of cuts on data set without changes o **Blind Analysis**

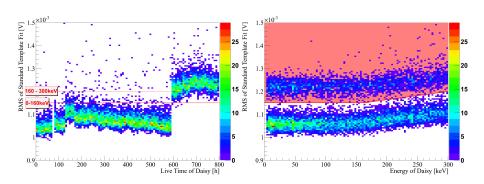

Distinctive feature of the RMS

Two contributions:

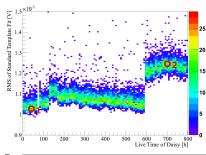
- differences in pulse shape between pulse and template
- onoise

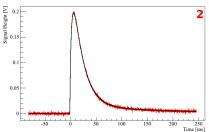

5 / 16

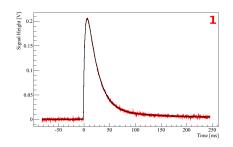
Time and Energy Dependence


- previous analyses: polygon cut to account for energy dependence
- time dependence prevents development of polygon cut on training set
- adjustment of the polygon cut on data set necessary
- → completely blind analysis impossible

Time and Energy Dependence

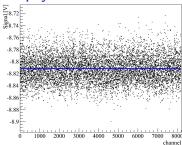

- previous analyses: polygon cut to account for energy dependence
- time dependence prevents development of polygon cut on training set
- adjustment of the polygon cut on data set necessary
- → completely blind analysis impossible


Time and Energy Dependence

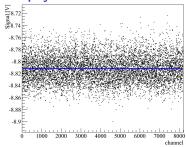


- previous analyses: polygon cut to account for energy dependence
- time dependence prevents development of polygon cut on training set
- adjustment of the polygon cut on data set necessary
- → completely blind analysis impossible

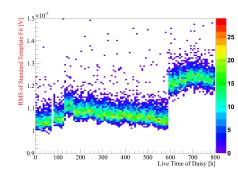
Fit Examples

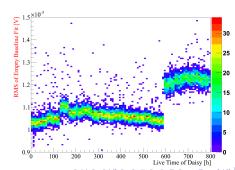


- nearly no influence of moderate noise changes on energy resolution
- adjustment of RMS cut to current noise level needed


7 / 16

Empty Baselines




Use straight line fit of empty baselines to detect changes in noise.

Empty Baselines

Use straight line fit of empty baselines to detect changes in noise.

3D RMS Cut

Steps of new 3D RMS Cut

- automatically find periods of constant noise
- eperform energy dependent cut, which is adapted automatically to different noise levels, within each period

Automatic Edge Finding

- lacktriangledown smooth/filter data (RMS vs. time)ightarrow convolution with Gaussian ([f*g](t))
- calculate derivative
- find extrema of derivative

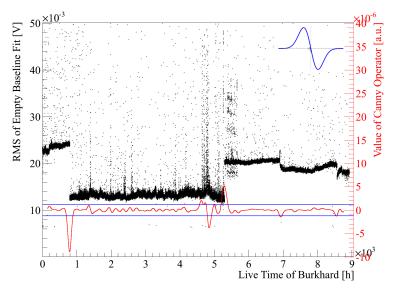
Effective Implementation: Canny Edge Detection

- derivative of Gaussian: $\frac{d}{dt}[f*g](t) = [f*\frac{d}{dt}g](t)$
- ullet width of Gaussian (σ) determines sensitivity of edge finding to noise

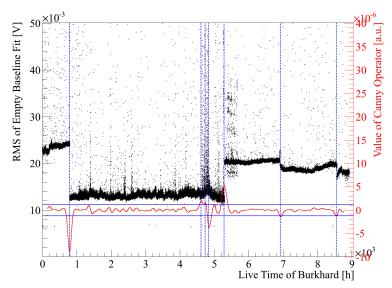
3D RMS Cut

Steps of new 3D RMS Cut

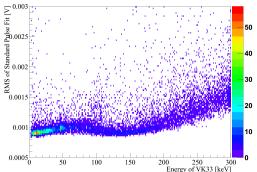
- automatically find periods of constant noise
- eperform energy dependent cut, which is adapted automatically to different noise levels, within each period


Automatic Edge Finding

- lacktriangle smooth/filter data (RMS vs. time)ightarrow convolution with Gaussian ([f*g](t))
- calculate derivative
- find extrema of derivative

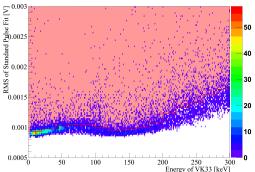

Effective Implementation: Canny Edge Detection

- core element: combination of step one and two via convolution with derivative of Gaussian: $\frac{d}{dt}[f*g](t) = [f*\frac{d}{dt}g](t)$
- ullet width of Gaussian (σ) determines sensitivity of edge finding to noise


Automatic Edge Finding - Example

Automatic Edge Finding - Example

Energy Dependent RMS Cut


Method

- sort events in energy bins
- ② fit RMS distribution in each energy-bin using a Gaussian
- o cut all events with an RMS

Parameters

bin width detector-specific (20keV) cut limit common for all detectors (1σ)

Energy Dependent RMS Cut

Method

- sort events in energy bins
- fit RMS distribution in each energy-bin using a Gaussian
- cut all events with an RMS above a certain limit

Parameters

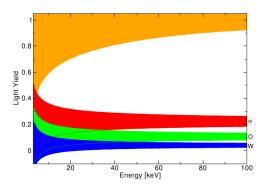
bin width detector-specific (20keV) cut limit common for all detectors (1σ)

Conclusion

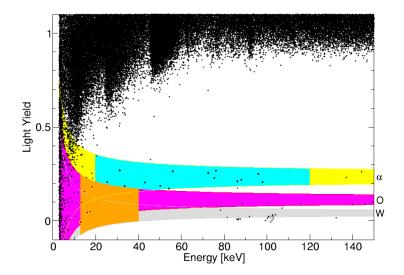
3D RMS Cut

Steps:

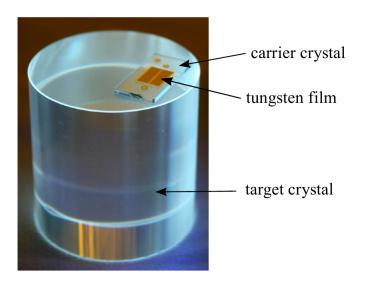
- automatic detection of periods of constant noise
- sort events within each period in energy bins
- determine bin-specific cut limit by fitting a Gaussian to the bin's RMS distribution


Advantages:

- Development of all relevant parameters on training set
- → Blind analysis possible
 - Common cut parameter for all detectors
- ightarrow Enables to systematically study of influence of RMS cut on physics results


Backup Slides

Active Background Discrimination


• use **light yield** $\frac{L}{E}$ to distinguish between event types

Ligh Yield - Energy Plane incl. Acceptance Region

Composite Target Crystal

