On the Variability of the VHE γ -ray Emission From the Crab Nebula and Pulsar

Wojciech Idec1

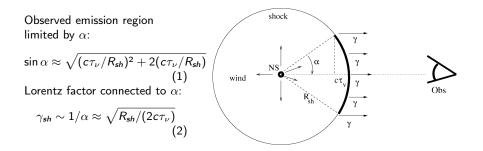
¹Department of Astrophysics, University of Łódź, Poland

22nd IMPRS Workshop Max-Plank-Institut für Physik Munich, March 19th, 2012

Crab Nebula

- Day-scale variability of the Crab Nebula
 - A theoretical explanation of observed gamma-ray flares
 - Numerical calculations of the synchrotron and IC spectra of $\gamma\text{-rays}$ emited by the Nebula
- Searching for the Crab Pulsar month-scale variability with MAGIC telescopes

- Crab Nebula as a γ -ray standard candle.
- \bullet 2-component (synchrotron and IC) $\gamma\text{-ray}$ spectrum.
- Hypotetical flickering of the spectral tails due to the nonstationary acceleration of leptons at the pulsar wind shock.
- Observed flaring in GeV energies (e.g. Fermi-LAT) higher flux, different spectral index.

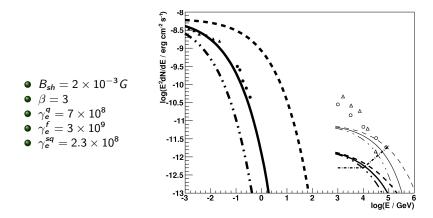

Possible scenarios for variable emission from Crab Nebula

- Small region of the wind shock is excited
 - $\bullet\,$ Extension of wisps biger than variability timescale $\to\,$ reject
- ② Emission region is moving relativistically towards the observer
 - Pulsar wind magnetic field reconnection may occur.
 - $\bullet~$ Good conditions for particle acceleration $\rightarrow~$ consider

See also:

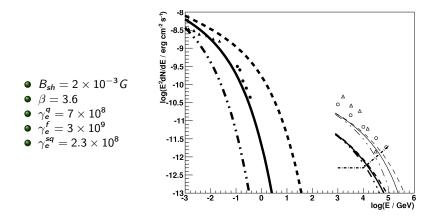
- Komissarov, Lyutikov, 2011, MNRAS, 414, 2017
- Cerutti, Uzdensky, Begelman, 2012, ApJ, 746, 148

Shock moving relativisticaly outwards with γ_{sh} .

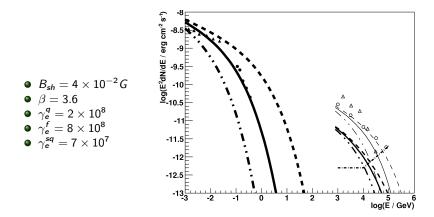

Spectra calculated using formulae from *Blumenthal, Gould, 1970, Rev. Mod. Phys., 42, 237*

- Synchrotron spectra
- Inverse Compton spectra

In Inverse Compton spectra only well-definned soft photon targets taken into account:


- microwave background radiation (MBR)
- synchrotron radiation from the nebula

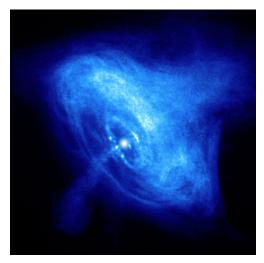
Calculations of the synchrotron and IC spectra – results


 β – index of electron spectrum

Calculations of the synchrotron and IC spectra – results

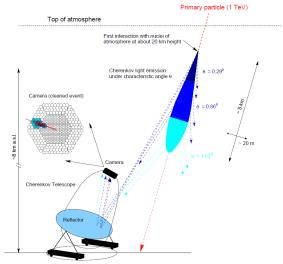
 β – index of electron spectrum

Calculations of the synchrotron and IC spectra – results



 β – index of electron spectrum

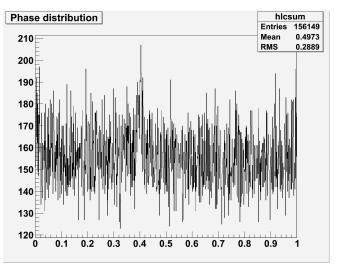
Conclusions I


- Day-scale variable emission from the Crab Nebula can be explained by moving emission region.
- γ-ray emission may come from the region just behind the shock in the pulsar wind.
- Solution Electrons may be accelerated during the reconnection of magnetic field and emit HE synchrotron radiation, as well as IC VHE γ -rays by scattering of the MBR and LE synchrotron radiation.
- Results may be verified by future CTA experiment.
- S Numerical calculations for the newest observed flare ongoing.
- More to be found in W. Bednarek, W. Idec, 2011, MNRAS, 414, 2229 (+ references)

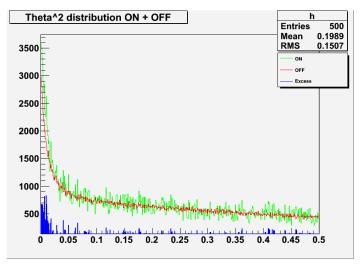
Motivation - Thomas Schweizer's (MPI für Physik, Munich) idea

Introduction - IACT technique

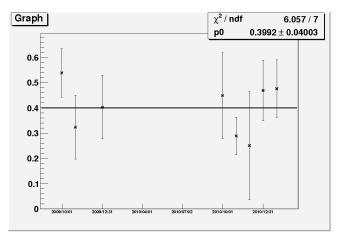
- γ -rays: HE, VHE, (PeV)
- Absorbed by atmosphere
- El-mag cascades
- Observed from the ground

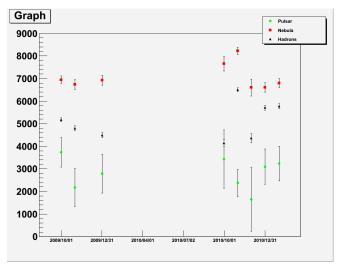

Idea

Produce a lightcurve of Crab Pulsar (ratio of the signal Pulsar/Nebula).


Initial assumptions

- Using preprocessed data files
- Using stereo data 10.2009 02.2011
- O Data grouped into 1-month bins


Determine the best ON and OFF phase regions


Produce the θ^2 plots for ON & OFF

Pulsar/Nebula ((ON-OFF)/(OFF-Had)) lightcurve

Pulsar, Nebula and Hadron rates

Conclusions II

- Crab Pulsar is stable...
- ... or we need more statistics
- Crab Nebula is variable (it is indeed)

Future

- Calculations of the spectra for the parameters of the newest observed flare in Crab Nebula.
- Optimization of the data analysis from the MAGIC telescopes in order to gain more statistics.
- Producing long-time-scale lightcurve for Crab Nebula from the MAGIC data.

Thank you.