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Goldstone Boson Equivalence Theorem:

ML(Aµ) =M(φ) +O
m
E
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The Standard Model GBET: Advantages

Advantages of ML(Aµ) =M(φ) +O
m
E



5 computational simplifications:

6 less diagrams
6 simpler Feynman rules

5 focus on those d.o.f. that limit the regime of validity

6 easier cut-off estimation
6 conclusions for possible UV-completions ↑Ecut−off−

5 easier check for ghost-free theories
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The GBET for Massive Gravitons

LSZ reduction formula for Massive Gravitons (E � m):

M(hµν) = FT
{
∂α∂βKµναβ〈out|hµν|in〉

}
+O

m
E



=⇒ ML(hµν) =M(φ) +O
m
E



=⇒Transparent understanding of

6 Fierz-Pauli form of the Lagrangian m2(hµνhµν − ah2)
m2(1− a)(�φ)2

=⇒ a != 16 vDVZ discontinuity



Massive Gravitons on Cosmological Backgrounds

Problem:

S-Matrix formulation not possible a priori

=⇒ Restriction to spacetimes

6 which are globally hyperbolic
6 where the fields are asymtotically free

e.g.: FRW-background

ML(hµν) =M(φ) +O

m

E


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Additional Material / Discussion

Spontaneous Symmetry Breaking and the Goldstone Theorem

degenerate vaccum
with non-zero expectation value

⇓
excitation of zero energy can take
one to another vacuum

⇓
expectation of particles with zero energy
⇓

massless particles



Additional Material / Discussion

Cut-off estimation

Strong coupling scale: higher order terms cannot be neglected
anymore

=⇒ it can be derived by comparing the different orders

e.g. Massive Gravity:
1

m4
gMPl

(∂2φc)3 is the strongest coupling term

=⇒ it becomes large at Λ5 ∼ (m4
gMPl)

1
5



Additional Material / Discussion

Polarization vectors in the high energy limit

5 vector boson at rest:
6 four momentum kµ = (m,0)
6 polarization vectors εT1

µ = (0, 1, 0, 0), εT2
µ = (0, 0, 1, 0)

εL
µ = (0, 0, 0, 1)

( εµkµ = 0 ; ε2 = −1 )
5 boosted vector boson (along the 3-axis)

6 four momentum kµ = (E,k) = (E, 0, 0, |k|)
6 polarization vectors εT1

µ = (0, 1, 0, 0), εT2
µ = (0, 0, 1, 0)

εL
µ = 1

m(|k|, 0, 0, E) = kµ
m

|k| → ∞ =⇒ εT
µ become increasingly negligible



Additional Material / Discussion

The LSZ reduction formula for spin 1

5 S-matrix element M = 〈out|in〉
5 |in〉 = a†in(k1)|k2, ..., kr, in〉 for an r-particle initial state
5 expressions for a and a† from field expansions

e.g. Aµ(x) = ∑
n

(
anf

µ∗
n (x) + a†nf

µ
n (x)

)

=⇒ an = i
�

dνxAµ(x)
↔
∂ νfµn(x)

a†n = −i
�

dνxAµ(x)
↔
∂ νf

∗
µn(x)

M = 〈out|in〉 = i(r+s)
�

d4x1...d4ys f
∗
µk1(x1)...f%ps(ys)

×Kµν(x1)...K%γ(ys)
×〈out|T [Aν(x1)...Aγ(ys)] |in〉



Additional Material / Discussion

Introducing Stückelberg fields into Massive Gravity

Smassive gravity =
�

d4x (−1
2
∂λhµν∂

λhµν + ∂µh
µλ∂νhνλ − ∂µhµλ∂λh + 1

2
∂λh∂

λh

−1
2
m2(hµνhµν − h2) + κhµνTµν)

Restoring gauge invariance / introducing a Stückelberg field Aµ:

hµν → hµν + ∂(µAν)
2m

=⇒ L = Lm=0 −
1
2
m2(hµνhµν − h2) + κhµνTµν

−1
8
FµνF

µν + m(h∂A− hµν∂µAν)

The resulting Lagrangian is invariant under

δhµν = ∂(µΥν)
2m

, δAµ = −Υµ



Additional Material / Discussion

Quantization in Rξ-gauge

5 abelian gauge theories: Gupta Bleuler quantization

5 non-abelian gauge theories: demand for Faddeev-Popov ghosts
(unitarity, renormalizability)

⇓
BRST symmetry

⇓
BRST quantization

=⇒ Quantization of non-abelian gauge theories
demands a more restrictive state selection



Additional Material / Discussion

The vDVZ discontinuity

Massive Gravity

⇓m→ 0�
General Relativity

But: Within the Vainshtein radius rV =
GNM

m4
g

1
5

the linear approximation breaks down
For m→ 0 rV →∞ =⇒ no trustworthy information

=⇒ non-linear solution shows a smooth massless limit



Additional Material / Discussion

Derivation of the Vainshtein radius

The potential set up for φc by a source of mass M can be diagram-
matically represented as

(coupling to source ∼ M
MPl

)

φc(1) ∼ M
MPl

1
r φc(2) ∼

(
M
MPl

)2 1
Λ5

1
r6

=⇒ φc(1) != φc(2)

=⇒ rV =
GNM

m4
g

1
5 using Λ5 = (m4

gMPl)
1
5 and GN = 1

M2
Pl



Additional Material / Discussion

A simple plausibility check

Introducing Stückelberg fields in Massive Gravity

hµν → hµν + ∂µ∂νφ

m2

going to momentum space

hµν → hµν + kµkνφ

m2

argument: in the high energy limit the last term dominates
But: φ is also k-dependent


