Study of the decay $B^0 \rightarrow \omega K^0_S$ at Belle

Veronika Chobanova

March 19th, 2012

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Content

Physical Motivation

Methods of the Analysis of the Decay ${\sf B}^0 o \omega {\sf K}^0_{\sf S}$

Measurement of $\mathcal{BR}(\mathsf{B}^0 o \omega \mathsf{K}^0)$ and au_{B^0}

Summary and outlook

Introduction to CP Violation

- Universe today is matter dominated
- Violation of CP = C(charge) × P(parity) symmetry necessary to explain the matter-antimatter asymmetry after the Big Bang
- CP violation in the Standard Model: Cabbibo-Kobayashi-Maskawa (CKM) mechanism
- CKM mechanism desribes the relation between the weak and the mass eigenstates of quarks
- CKM mechanism expressed through a complex, unitary 3×3 matrix

CKM Matrix

$$\left(\begin{array}{c} d' \\ s' \\ b' \end{array} \right)_{\rm weak} = V_{\rm CKM} \left(\begin{array}{c} d \\ s \\ b \end{array} \right)_{\rm mass} \equiv \left(\begin{array}{c} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array} \right) \left(\begin{array}{c} d \\ s \\ b \end{array} \right)_{\rm mass}$$

 $V_{\rm ij}$: quark flavour transition couplings

 CKM mechanism not enough to explain the matter dominance \Rightarrow New Physics beyond the Standard Model is needed

Physical Motivation Methods of the Analysis of the Decay $B^0 \rightarrow \omega K^0_c$ Measurement of $\mathcal{BR}(B^0 \rightarrow \omega K^0)$ and τ_{n0} Summary and outlook

CP Violation in the Standard Model

Wolfenstein parametrisation

$$V_{
m CKM} = egin{pmatrix} 1-\lambda^2 & \lambda & A\lambda^3(
ho-i\eta) \ -\lambda & 1-\lambda^2/2 & A\lambda^2 \ A\lambda^3(1-
ho-i\eta) & -\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

 $\lambda = \sin \theta_C \approx 0.22, \ \theta_C$: Cabibbo angle

CKM matrix is unitary

- $\Rightarrow V_{ud} \cdot V_{ub}^* + V_{cd} \cdot V_{cb}^* + V_{td} \cdot V_{tb}^* = 0$ $\mathcal{O}(\lambda^3) \quad \mathcal{O}(\lambda^3) \quad \mathcal{O}(\lambda^3)$ relevant for the *B* meson system
 - Sides with similar size ⇒ large angles, precise determination of the observables (3 angles and 2 sides) possible
 - ▶ problem over-constrained ⇒ leaves room for New Physics

 ϕ_1 most precisely measured from $b\to c\overline{c}s$ transitions ("Golden channel" $B^0\to J/\psi K^0_S)$ Decays via charmless $b\to sq\overline{q}$ (like $B^0\to \omega K^0_S)$ transitions sensitive to ϕ_1

\Rightarrow Decay is dominated by the penguin contribution

Measurement of

- The branching fraction $\mathcal{BR}(\mathsf{B}^0 \to \omega \mathsf{K}^0)$
- ▶ The *CP* parameters A_{CP} and $S_{CP} \propto \sin 2\phi_1^{eff}$ (tree diagram pollution)

Physical Motivation

Physical Motivation

d

Why the decay ${\sf B}^0 o \omega {\sf K}^0_{\sf S}$?

▶ The Standard Model predicts that $\sin 2\phi_1^{\text{eff}}$ from b → $\operatorname{sq}\overline{q}$ should be larger than from b → cc̄s (B⁰ → J/ ψ K⁰_S): $\sin 2\phi_1^{\text{eff}} - \sin 2\phi_1 \epsilon$ (0.0; 0.2)

Methods of the Analysis of the Decay $B^0 \rightarrow \omega \kappa_c^0$

- Measurements from penguin may be systematically lower (hint at New Physics?)
- Could be caused by unknown new particle in the loop carrying different weak phase

d ω

d

Summary and outlook

Measurement of $\mathcal{BR}(B^0 \rightarrow \omega K^0)$ and τ_{p0}

CP Violation in the B Meson System

Time-dependent CP asymmetry

$$a_{CP}(\Delta t, f_{CP}) = \frac{N_{\overline{B}0}(\Delta t, f_{CP}) - N_{B^0}(\Delta t, f_{CP})}{N_{\overline{B}0}(\Delta t, f_{CP}) + N_{B^0}(\Delta t, f_{CP})} = \mathcal{A}_{CP} \cos(\Delta m \Delta t) + \mathcal{S}_{CP} \sin(\Delta m \Delta t)$$

B^0 or $\overline{B}{}^0$?

→ Look at the other *B* (tag-side): If $I^- \Rightarrow \overline{B}^0$ on the tag-side and B^0 on the *CP*-side If $I^+ \Rightarrow B^0$ on the tag-side and \overline{B}^0 on the *CP*-side

Δt measurement

Asymmetric beam energies at KEKB

 \Rightarrow Boost of the center of mass system

Measurement of $\Delta z \sim 100 \,\mu\text{m}$ instead of $\Delta t \sim \text{ps}$ Obtain $\Delta t = \Delta z/c \langle \beta \gamma \rangle$

Approach

Goals

Study new methods to measure $\mathcal{BR}(B^0 \to \omega K^0)$, \mathcal{A}_{CP} and \mathcal{S}_{CP} and minimize the statistical and and systematic uncertainties

Approach

- Build an algorithm to reconstruct $B^0 \rightarrow \omega K^0_S$
- Study the backgrounds (qq
 , other B decays)
- Build an improved model to discriminate signal and background (multidimensional fit)
- Test the model

So far: "Blind Analysis". Study only from Monte Carlo (MC) samples

- Apply model to the real data
- ▶ Determine $\mathcal{BR}(B^0 \to \omega K^0)$, \mathcal{A}_{CP} and \mathcal{S}_{CP} and the uncertainties from the full data set of Belle

Previous Measurements of $B^0 \rightarrow \omega K_S^0$

	BB-pairs	${\cal BR}({\sf B^0} o \omega {\sf K^0})$	\mathcal{A}_{CP}	\mathcal{S}_{CP}
Belle Belle BaBar	$\begin{array}{l} 388 \times 10^{6} \\ 535 \times 10^{6} \\ 467 \times 10^{6} \end{array}$	$(4.4^{+0.8}_{-0.7} \pm 0.4) \times 10^{-6}$ [1] (5.4 ± 0.8 ± 0.3) × 10 ⁻⁶	$-0.09 \pm 0.29 \pm 0.06 \\ 0.52^{+0.22}_{-0.20} \pm 0.03$	$0.11 \pm 0.46 \pm 0.07[2]$ $0.55^{+0.26}_{-0.29} \pm 0.02$ [3]

Full data set of Belle $772\times 10^6~\text{B}\overline{\text{B}}$ pairs

PhysRevD.74.111101
 PhysRevD.76.091103
 PhysRevD.79.052003

Challenging analysis

- $\mathcal{BR}(B^0 \rightarrow \omega K^0) \sim 10^{-6}$ (small)
- \blacktriangleright Large background contribution from $q\overline{q}$ (u,d,s,c) background

Our method

- Use loose cuts on the observables for maximum signal sensitivity
- ▶ Multidimensional fit to the modelled probability density functions to extract $\mathcal{BR}(B^0 \to \omega K^0)$, \mathcal{A}_{CP} , \mathcal{S}_{CP} and their uncertainties

Physical Motivation $\,\,$ Methods of the Analysis of the Decay ${
m B}^0
ightarrow \omega {
m K}^0_{
m c}$

Measurement of $\mathcal{BR}(B^0 \rightarrow \omega K^0)$ and τ_{n0}

Measurement of $\mathcal{BR}(\mathsf{B}^0 \to \omega \mathsf{K}^0)$

Extract $\mathcal{BR}(B^0 \to \omega K^0)$ by a 6D extended unbinned maximum likelihood fit

Fit observables

$$\begin{split} \Delta E &= E^{\rm CMS}_{{\mathcal B}_{\rm rec}} - E^{\rm CMS}_{\rm beam} \\ \mathcal{F}_{\rm B\bar{B}/q\bar{q}} \colon \text{Fisher discriminant, event-shape dependent} \\ m_{3\pi} \colon \text{mass of the reconstructed } 3\pi \text{ final state} \\ \Delta t \colon \text{time difference between the two B decays} \\ q &= 1 \text{ for } \mathbb{B}^0 \text{ and } q = -1 \text{ for } \overline{\mathbb{B}}^0 \\ \text{New in this analysis: Helicity angles } \mathcal{H}_{3\pi}, \text{ powerful observable for background} \\ \text{discrimination} \end{split}$$

Multidimensional analysis \Rightarrow model for signal and background necessary

Physical Motivation Methods of the Analysis of the Decay $B^0 \rightarrow \omega \kappa_c^0$ Measurement of $\mathcal{BR}(B^0 \rightarrow \omega K^0)$ and τ_{p0} Summary and outlook Toy MC studies

Test the model with Toy MC Expected number of events

signal ~ 230 $q\bar{q} \sim 5300$ $\overline{BB} \sim 130$ Events / (0.01 GeV) 300 250 200 150 100 50 Normalised Residuals

Projection of $\Delta E = E_{B_{\rm res}}^{\rm CMS} - E_{\rm heam}^{\rm CMS}$

0.05 0.1 ∆E (GeV)

-0.15-0.1 -0.05 Full data set of Belle: $772 \times 10^6 \text{ BB}$ pairs

Expectations for the statistical uncertainty of:

▶
$$\mathcal{BR}(\mathsf{B}^0 \to \omega \mathsf{K}^0)$$

BaBar (final)	Belle (previous)	Belle (current)
13% *	13% **	9.29	% **

 $\blacktriangleright \mathcal{A}_{CP}$

BaBar (final)	Belle (previous)	Belle	(current)
0.20 *	0.24 **	0.19 **	

► SCP

BaBar (final)	Belle (previous)	Belle ((current)
0.26 *	0.38 **	0.28 **	

* Final result of BaBar

** Scaled to the full data set of Belle

 \Rightarrow Our method is better than the previous Belle analysis

Results from the Fit to the Data

Projection of $\Delta E = E_{B_{\rm res}}^{\rm CMS} - E_{\rm beam}^{\rm CMS}$ Events / (0.01 GeV) 50 10 Normalised Residuals -0.1 -0.05 0.1 ΔE (GeV)

Black: Full PDF Total background BB background

Partial box opening with $152 \times 10^6 \, B\overline{B}$ pairs (Full statistics: $772 \times 10^6 \, B\overline{B}$ pairs) Unbinned maximum likelihood fit to 6 observables

Preliminary Result from $152 \times 10^6 \text{ BB}$ pairs $\mathcal{BR}(B^0 \rightarrow \omega K^0) = [4.94^{+1.28}_{-1.14}(\text{stat})] \times 10^{-6}$ $\tau_{B^0} = [1.522 \pm 0.35(\text{stat})] \text{ ps} \text{ (cross-check)}$

- ► Belle $388 \times 10^6 \, \text{B}\overline{\text{B}}$ pairs $\mathcal{BR}(\text{B}^0 \to \omega \text{K}^0) = [4.4^{+0.8}_{-0.7} \pm 0.4] \times 10^{-6}$
- ▶ World average $\mathcal{BR}(B^0 \rightarrow \omega K^0) = [5.0 \pm 0.6] \times 10^{-6}$ $\tau_{B^0} = [1.519 \pm 0.007] \text{ ps}$

Summary and outlook

Summary

- ▶ The decay $B^0 \rightarrow \omega K_S^0$ is sensitive to the angle ϕ_1 . A possible deviation in the measurement of sin $2\phi_1$ could be a hint at New Physics
- We have built a model which improves the results than the previous Belle analysis
- Method was successfully applied to a subset of Belle's data

Outlook

- Add additional variables to the fit to improve the signal-background separation power
- Further reduce the systematic uncertainties by performing a simultaneous fit to the control sample $B^+ \rightarrow \omega K^+$ (same kinematics as $B^0 \rightarrow \omega K^0_S$)
- ▶ With this improvement the results from the full Belle statistics will dominate the world average for \mathcal{A}_{CP} and \mathcal{S}_{CP} and $\mathcal{BR}(B^0 \to \omega K^0)$
- ► But: Accuracy still too limited to challenge the Standard Model ⇒ Belle II should provide more statistics for a precise measurement

Thank you for your attention

Backup

CP Violation Measurement

$$\begin{array}{lll} m_{\Upsilon(4S)} & = & 10.58\,{\rm GeV/c^2} \approx 2\times m_B \\ m_B & = & 5.28\,{\rm GeV/c^2} \end{array}$$

B Meson production

► Ŷ(4S) resonance decays almost exclusively into a BB pair

•
$$\Upsilon(4S): J^P = 1^-$$

B: $J^P = 0^-$

- \Rightarrow *B* meson pair in a p-wave
- \Rightarrow asymmetric wave function
- \Rightarrow *B* mesons have opposite flavour
- $B\overline{B}$ pair coherent

Physical Motivation Methods of the Analysis of the Decay $B^0 \rightarrow \omega K^0_c$ Measurement of $\mathcal{BR}(B^0 \rightarrow \omega K^0)$ and τ_{n0} Summary and outlook

CP Violation in the *B* Meson System

Time-dependent CP asymmetry

$$a_{CP}(\Delta t, f_{CP}) = \frac{N_{\overline{B}0}(\Delta t, f_{CP}) - N_{B^0}(\Delta t, f_{CP})}{N_{\overline{B}0}(\Delta t, f_{CP}) + N_{B^0}(\Delta t, f_{CP})} = \mathcal{A}_{CP} \cos(\Delta m \Delta t) + \mathcal{S}_{CP} \sin(\Delta m \Delta t)$$

Toy MC Study

100 pseudo-experiments generated: 907 events for SVD1 and 5554 events for SVD2

	$\textit{N}_{\rm Sig}$	$N_{ m qar q}$	$\textit{N}_{B^0\overline{B}0}^{\rm Charm}$	$\textit{N}_{B^+B^-}^{\rm Charm}$	$N_{B^0\overline{B}0}^{\mathrm{Charmless}}$	$\textit{N}_{\text{B}^+\text{B}^-}^{\rm Charmless}$	$N_{\mathrm{B}^0\overline{\mathrm{B}}0}^{\mathrm{PB,Charm}}$	$\textit{N}_{\rm Mis}$
# SVD1	37	849	4	4	4	3	6	0
# SVD2	196	5241	12	28	25	19	31	2

$$N_{Sig} = \mathcal{B}(B^0 \rightarrow \omega K_S^0) \sum_i (N_{BB}^i \epsilon_{Rec}^i \eta^i), i = [SVD1, SVD2],$$

 $\mathcal{B}(B^0 \rightarrow \omega K_0^S) = 2.5 \cdot 10^{-6}$

Free parameters in the fit

- ▶ $\mathcal{BR}(B^0 \to \omega K_S^0)$, \mathcal{A}_{CP} and \mathcal{S}_{CP} ▶ $N_{\alpha \bar{\alpha}}^{1,2}$
- $\blacktriangleright N_{B^0\overline{B}0}^{\text{Charm};1,2}$
- ΔE slope for $q\bar{q}$, $C_{q\bar{q}}^{1,2}(\Delta E)$

Physical Motivation Methods of the Analysis of the Decay $B^0 \rightarrow \omega K_0^0$ Measurement of $\mathcal{BR}(B^0 \rightarrow \omega K^0)$ and τ_{n0}

Summary and outlook

Toy MC studies for $B^0 \rightarrow \omega K_S^0$

Test the model with Toy MC **Expected number of events**

signal ~ 230 *q* q ~ 5300 BB ~ 130

Expectations for $\mathcal{BR}(B^0 \to \omega K^0)$

Uncertainty 9.2% Error scaled to final data sets Belle (previous): 13% , BaBar: 13% \Rightarrow Our method is better

Pull distribution of $\mathcal{BR}(B^0 \rightarrow \omega K^0)$

No bias, correct error estimation

Study of the decay ${
m B}^0
ightarrow \omega {
m K}^0_{
m S}$ at Belle

Toy MC studies for $\mathcal{A}_{C\mathcal{P}}$ and $\mathcal{S}_{C\mathcal{P}}$

Expectations for \mathcal{A}_{CP}

Uncertainty ± 0.19 Error scaled to final data set Belle (previous): ± 0.24 , BaBar: ± 0.20

Pull distribution of \mathcal{A}_{CP}

No bias, correct error estimation

Expectations for S_{CP}

Uncertainty ± 0.28 Error scaled to final data set Belle (previous): $\pm 0.38,$ BaBar: ± 0.26

Pull distribution of \mathcal{S}_{CP}

No bias, correct error estimation

$$B^0 \rightarrow \omega K_S, \ \omega \rightarrow \pi^+ \pi^- \pi^0$$

General selection criteria for the reconstruction

π^+ candidates

• $L_{K/\pi} < 0.9$ in order to remove tracks consistent with kaon hypothesis

π^0 candidates

- ▶ 118 $MeV/c^2 < m(\gamma\gamma) < 150 MeV/c^2$, mass fit $\chi^2 < 50$
- ▶ $E_{\gamma} > 50 \ MeV$ in ECL barrel, $E_{\gamma} > 100 \ MeV$ in ECL endcap

K_S candidates

- ▶ "Good K_S" cut
- ▶ 0.482 $GeV/c^2 < m(\pi^+\pi^-) < 0.514 \ GeV/c^2 \ (m(K_S) \pm 16 \ MeV))$

ω candidates

▶ 0.73
$$GeV/c^2 < m(\pi^+\pi^-\pi^0) < 0.83 ~GeV/c^2 ~(m(\omega) \pm 50 ~MeV))$$

Physical Motivation Methods of the Analysis of the Decay $B^0 \rightarrow \omega K^0_S$ Measurement of $\mathcal{BR}(B^0 \rightarrow \omega K^0)$ and τ_{p0} S

Summary and outlook

B Reconstruction

B⁰candidates

- $\blacktriangleright~M_{\rm bc} > 5.27~GeV/c^2$ and -0.15 $GeV < \Delta E < 0.1~GeV$
- Best *B* selection: best $M_{\rm bc} = \sqrt{(E_{beam}^{cms})^2 (p_B^{cms})^2}$

Reconstruction efficiency: 13.2% for SVD1 and 16.8% for SVD2 Misreconstruction fraction: 2.3% for SVD1 and 2.4% for SVD2 \sim 230 events expected (118 for previous analysis)

Fit to
$$\Delta E$$
, $\mathcal{F}_{\mathrm{B}\bar{\mathrm{B}}/\mathrm{q}\bar{\mathrm{q}}}$, $m_{3\pi}$, $\mathcal{H}_{3\pi}$, Δt , q

Fit region:

- ▶ $-0.15 \,\mathrm{GeV} < \Delta \mathrm{E} < 0.1 \,\mathrm{GeV}$
- $\blacktriangleright \ -2 < \mathcal{F}_{\mathrm{B}\bar{\mathrm{B}}/\mathrm{q}\bar{\mathrm{q}}} < 2$
- ▶ 0.73 ${\rm GeV/c^2} < m_{3\pi} < 0.83 \, {\rm GeV/c^2}$
- $\blacktriangleright \ -1 < \mathcal{H}_{3\pi} < 1$
- ► $-70 \,\mathrm{ps} < \Delta t < 70 \,\mathrm{ps}$

Signal Model

Signal model correlation matrix

	ΔE	$\mathcal{F}_{\mathrm{B}ar{\mathrm{B}}/\mathrm{q}ar{\mathrm{q}}}$	$m_{3\pi}$	$\mathcal{H}_{3\pi}$	Δt
ΔE	1	0.012	0.29	-0.003	0.007
$\mathcal{F}_{\mathrm{B}ar{\mathrm{B}}/\mathrm{q}ar{\mathrm{q}}}$		1	0.001	0.001	0.003
$m_{3\pi}$			1	-0.003	0.004
$\mathcal{H}_{3\pi}$				1	0.001
Δt					1

Physical Motivation Methods of the Analysis of the Decay $B^0 \to \omega K_S^0$ Measurement of $\mathcal{BR}(B^0 \to \omega K^0)$ and τ_{n0} Summary and outlook

Signal MC ΔE and $\mathcal{F}_{B\bar{B}/q\bar{q}}$

Triple Gaussian

$$egin{aligned} \mathcal{P}_{ ext{Sig}}(\Delta E) &= f_1 G(\Delta E; \, \mu_1, \, \sigma_1) \ &+ f_2 G(\Delta E; \, \mu_2, \, \sigma_2) \ &+ (1 - f_1 - f_2) G(\Delta E; \mu_3, \, \sigma_3) \end{aligned}$$

Triple Gaussian in each r-bin I

$$\begin{split} \mathcal{P}_{\mathrm{Sig},\mathrm{l}}(\mathcal{F}_{\mathrm{B}\bar{\mathrm{B}}/\mathrm{q}\bar{\mathrm{q}}}) &= f_1 G(\mathcal{F}_{\mathrm{B}\bar{\mathrm{B}}/\mathrm{q}\bar{\mathrm{q}}}; \, \mu_{1,1}, \, \sigma_{1,1}) \\ &+ f_2 G(\Delta E; \, \mu_{2,1}, \, \sigma_{2,1}) \\ &+ (1 - f_1 - f_2) G(\Delta E; \, \mu_{3,1}, \, \sigma_{3,1}) \end{split}$$

Signal MC $m_{3\pi}$ and $\mathcal{H}_{3\pi}$

Triple Gaussian

$$egin{aligned} \mathcal{P}_{ ext{Sig}}(m_{3\pi}) &= f_1 G(m_{3\pi};\,\mu_1,\,\sigma_1) \ &+ f_2 G(m_{3\pi};\,\mu_2,\,\sigma_2) \ &+ (1-f_1-f_2) G(m_{3\pi};\,\mu_3,\,\sigma_3) \end{aligned}$$

4th order Chebyshev

$$\mathcal{P}_{\mathrm{Sig}}(\mathcal{H}_{3\pi}) = \sum_{i=0}^{4} c_i C_i(\mathcal{H}_{3\pi})$$

Physical Motivation Methods of the Analysis of the Decay $B^0 \rightarrow \omega K_S^0$ Measurement of $\mathcal{BR}(B^0 \rightarrow \omega K^0)$ and τ_{p0} Summary and outlook

ΔE signal MC

$$\begin{aligned} \mathcal{P}_{\mathrm{Sig}}(\Delta E) &= f_1 G(\Delta E; \, \mu_1, \, \sigma_1) + f_2 G(\Delta E; \, \mu_2, \, \sigma_2) \\ &+ (1 - f_1 - f_2) G(\Delta E; \, \mu_3, \, \sigma_3) \\ \mathcal{P}_{\mathrm{Sig}}(m_{3\pi}) &= f_1 G(m_{3\pi}; \, \mu_1, \, \sigma_1) + f_2 G(m_{3\pi}; \, \mu_2, \, \sigma_2) \\ &+ (1 - f_1 - f_2) G(m_{3\pi}; \, \mu_3, \, \sigma_3) \end{aligned}$$

Correlations modeled by

$$\mu_1(m_{3\pi}) = \mu_0 + A \cdot \Delta E$$
 and
 $\sigma_1(m_{3\pi}) = \sigma_0 + B \cdot \Delta E^2$

29% corr. between ΔE and $m_{3\pi}$

Study of the decay $B^0 \rightarrow \omega K_c^0$ at Belle

ω mass projection in bins of ΔE

 $0.05~\text{GeV} < \Delta E < 0.1~\text{GeV}$

 $-0.05~\text{GeV} < \Delta E < 0.~\text{GeV}$

 $m_{3\pi}$ peak shifts to the right as ΔE increases

Width of $m_{3\pi}$ peak shrinks for small values of $|\Delta E|$

Model in the first and last bin may be good enough because very few (\sim 10) events expected there

 Δt signal MC

Input $\tau_{B^0} = 1.534 \,\mathrm{ps}$ SVD1 $\tau_{B^0} = 1.522 \pm 0.006 \,\mathrm{ps}$ (2 σ from input) SVD2 $\tau_{B^0} = 1.517 \pm 0.005 \,\mathrm{ps}$ (3.4 σ)

Input
$$A_{CP} = 0$$

SVD1 $A_{CP} = -0.053 \pm 0.007 (7.6\sigma)$
SVD2 $A_{CP} = -0.037 \pm 0.006 (6.2\sigma)$

Input
$$S_{CP} = 0.689$$

SVD1 $S_{CP} = +0.697 \pm 0.010 (0.8\sigma)$
SVD2 $S_{CP} = +0.690 \pm 0.008 (0.1\sigma)$

$$\mathcal{P}_{\mathrm{Sig}}(\Delta t, q) = (1 - f_{ol}) \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \cdot \left[1 - q\Delta w + q(1 - 2w) \left(\mathcal{A}_{CP} \cos(\Delta m \Delta t) + \mathcal{S}_{CP} \sin(\Delta m \Delta t) \right) \right] \\ \otimes \mathcal{R}_{B^0 \bar{B}^0} + f_{ol} \mathcal{P}_{ol}$$

Continuum Model

Sideband

$\begin{array}{l} {\rm 5.2\,GeV/c^2 < M_{bc} < 5.25\,GeV/c^2} \\ {\rm 0.05\,GeV < \Delta E < 0.2\,GeV} \end{array}$

Continuum model correlation matrix

	ΔE	$\mathcal{F}_{\mathrm{B}ar{\mathrm{B}}/\mathrm{q}ar{\mathrm{q}}}$	$m_{3\pi}$	$\mathcal{H}_{3\pi}$	Δt
ΔE	1	0.007	0.005	0.001	0.012
$\mathcal{F}_{\mathrm{B}ar{\mathrm{B}}/\mathrm{q}ar{\mathrm{q}}}$		1	0.002	0.005	0.007
$m_{3\pi}$			1	-0.015	0.005
$\mathcal{H}_{3\pi}$				1	-0.001
Δt					1

Continuum ΔE and $\mathcal{F}_{Bar{B}/qar{q}}$

First order Chebyshev $\mathcal{P}_{q\bar{q}}(\Delta E) = \sum_{i=0}^{1} c_i C_i(\Delta E)$

Double Gaussian in each *r*-bin *l* for SVD2, single Gaussian for SVD1

$$egin{aligned} \mathcal{P}_{\mathrm{q}ar{\mathrm{q}},\mathrm{l}}(\mathcal{F}_{\mathrm{B}ar{\mathrm{B}}/\mathrm{q}ar{\mathrm{q}}}) &= \mathit{fG}(\mathcal{F}_{\mathrm{B}ar{\mathrm{B}}/\mathrm{q}ar{\mathrm{q}}};\,\mu_{1,\,1},\,\sigma_{1,\,1}) \ &+ (1-\mathit{f})\mathit{G}(\Delta \mathit{E};\,\mu_{2,\,1},\,\sigma_{2,\,1}) \end{aligned}$$

1

Gaussian + 1st order Chebyshev

$$egin{aligned} \mathcal{P}_{ ext{q}ar{ ext{q}}}(m_{3\pi}) &= fG(m_{3\pi},\,\mu,\,\sigma) \ &+ (1-f)\sum_{i=0}^{1}c_{i}C_{i}(m_{3\pi}) \end{aligned}$$

Gaussian + 1st order Chebyshev

$$egin{aligned} \mathcal{P}_{\mathrm{q}ar{\mathrm{q}}}(\mathcal{H}_{3\pi}) &= \mathit{fG}(\mathcal{H}_{3\pi},\,\mu,\,\sigma) \ &+ (1-\mathit{f})\sum_{i=0}^{1} \mathit{c}_{i}\mathit{C}_{i}(\mathcal{H}_{3\pi}) \end{aligned}$$

Veronika Chobanova

Lifetime+prompt

$$\mathcal{P}_{\mathrm{q}ar{\mathrm{q}}}(\Delta t) = (1 - f_{ol}) \bigg[(1 - f_{\delta}) rac{e^{-|\Delta t|/ au_{q}ar{\mathrm{q}}}}{2 au_{qar{\mathrm{q}}}} + f_{\delta}\delta(\Delta t - \mu_{\delta}) \bigg] \otimes R_{qar{\mathrm{q}}} + f_{ol}\mathcal{P}_{ol}$$

Neutral Charm Model (peaking background)

Peaking background (three pions and a K_S^0 final states) $B^0 \rightarrow D^{*-}\pi^+$, with $D^{*-} \rightarrow \overline{D}^0\pi^-$ and $\overline{D}^0 \rightarrow K_S^0\pi^0$ $B^0 \rightarrow D^-\pi^+$, with $D^- \rightarrow K_S^0\pi^-\pi^0$ $B^0 \rightarrow D^-\rho^+$, with $D^- \rightarrow K_S^0\pi^-$ and $\rho^+ \rightarrow \pi^0\pi^+$

Neutral Charm Model (peaking background)

Neutral Charm model (peaking background) correlation matrix

	ΔE	$\mathcal{F}_{\mathrm{B}ar{\mathrm{B}}/\mathrm{q}ar{\mathrm{q}}}$	$m_{3\pi}$	$\mathcal{H}_{3\pi}$	Δt
ΔE	1	-0.019	0.066	-0.05	-0.041
$\mathcal{F}_{\mathrm{B}ar{\mathrm{B}}/\mathrm{q}ar{\mathrm{q}}}$		1	0.018	0.066	-0.033
$m_{3\pi}$			1	-0.043	0.065
$\mathcal{H}_{3\pi}$				1	0.019
Δt					1

Physical Motivation Methods of the Analysis of the Decay $\mathbb{B}^0 \to \omega \mathbb{K}^0_{\mathbb{C}}$ Measurement of $\mathcal{BR}(\mathbb{B}^0 \to \omega \mathbb{K}^0)$ and $\tau_{\mathbb{D}^0}$ Summary and outlook Peaking Background ΔE and $\mathcal{F}_{B\bar{B}/q\bar{q}}$

First order Chebyshev + Gaussian

$$\mathcal{P}_{B^0 \bar{B}^0}^{ ext{Charm, pb}}(\Delta E) = fG(\Delta E; \mu, \sigma) + (1 - f) \sum_{i=0}^{1} c_i C_i(\Delta E)$$

Shape fixed from signal MC, free main mean $\mu_{1,1}$

$$\begin{split} \mathcal{P}_{B^0\bar{B}^0}^{\text{Charm, pb, l}}(\mathcal{F}_{\mathrm{B\bar{B}}/\mathrm{q\bar{q}}}) &= f_1 G(\mathcal{F}_{\mathrm{B\bar{B}}/\mathrm{q\bar{q}}}; \, \mu_{1,1}, \, \sigma_{1,1}) \\ &+ f_2 G(\Delta E; \, \mu_{2,1}, \, \sigma_{2,1}) \\ &+ (1 - f_1 - f_2) G(\Delta E; \, \mu_{3,1}, \, \sigma_{3,1}) \end{split}$$

Study of the decay $B^0 \rightarrow \omega K_c^0$ at Belle

Neutral charm $m_{3\pi}$ and $\mathcal{H}_{3\pi}$

Shape fixed from signal MC, Chebyshev 1st order added

$$\mathcal{P}^{ ext{Charm, pb}}_{B^0 ar{B}^0}(m_{3\pi}) = f \mathcal{P}_{ ext{Sig}}(m_{3\pi}) + (1-f) \sum_{i=0}^1 c_i C_i(m_{3\pi})$$

Gaussian

$$\mathcal{P}^{\mathrm{Charm,\, pb}}_{B^0 ar{B}^0}(\mathcal{H}_{3\pi}) = \mathcal{G}(\mathcal{H}_{3\pi};\,\mu,\,\sigma)$$

 Δt peaking background, $\mathcal{A} = 0$, $\mathcal{S} = 0$

$$\mathcal{P}_{B^0\bar{B}^0}^{\text{Charm, pb}}(\Delta t, q) = (1 - f_{ol}) \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \cdot \left[1 - q\Delta w + q(1 - 2w) \left(\mathcal{A}_{CP} \cos(\Delta m\Delta t) + \mathcal{S}_{CP} \sin(\Delta m\Delta t) \right) \right] \\ \otimes R_{B^0\bar{B}^0} + f_{ol} \mathcal{P}_{ol}$$

$$41$$

Veronika Chobanova Study of the decay $B^0
ightarrow \omega K^0_S$ at Belle