

Three-Dimensionnal Pixel Sensors for an ILC Micro-Vertex Detector

Marc Winter (IPHC-Strasbourg)

▷ More information on ILC Web site: http://www.linearcollider.org/cms/

Requirements for a Vertex Detector at ILC

 \Rightarrow Constraints from physics goals

⇔ Example of vertex detector geometry

- Expected evolution triggered by 3DIT
 - ⇔ Signal processing functionnalities
 - ⇔ Concerns : power consumption, material budget
 - ⇔ Common and complementary activities with sLHC

Summary

- ⇔ Constraints and Benefits from running conditions
- ⇔ Pixel technologies under development
- *⇔ Material budget*

- ILC \equiv next large scale accelerator after LHC $\triangleright \triangleright \triangleright$ Physics \gtrsim 2020
 - \triangleright it is an electron positron linear collider : c.m. energy up to \sim 1 TeV ; 31 km long site;
 - ▷ it will deepen discoveries made at LHC and extend the experimental sensitivity to new phenomena underlying the history of Universe (laws of Nature) and its present mysteries (Dark Matter, Dark Energy)

• ILC design expected to be technically ready for construction \gtrsim 2012 (... R&D started \gtrsim 10 years ago ...)

←→ Detector concept should mature synchronously (time scale less tight as LHC)

- ILC is a high precision machine :
 - ▷ electron positron collisions are relatively (compared to LHC) background free
 - > physics conditions of elementary interactions are particularly well defined and tunable
- \Rightarrow Very high precision/sensitivity studies accessible if detectors are extremely sensitive

 \Rightarrow Vertex Detector with unprecedented performances

- ILC is a high precision machine :
 - ▷ electron positron collisions are relatively (compared to LHC) background free
 - > physics conditions of elementary interactions are particularly well defined and tunable
- \Rightarrow Very high precision/sensitivity studies accessible if detectors are extremely sensitive

 \Rightarrow Vertex Detector with unprecedented performances

SD Integrated Technologies are expected to boost the access to the ultimate limit in precision and sensitivity

- Vertex Detector requirements include 2 major antagonistic trends :
 - \simeq Physics goals :

ILC-VD

- \triangleright high granularity \rightarrow single point resolution
- \triangleright low material budget \rightarrow thin detectors
- ▷ small distance to vertex → inner most layer very close to Interaction Point
- \triangleright large number of events of interest \rightarrow high interaction rate \rightarrow high beam intensity
- \simeq Running conditions :
 - \triangleright high beam intensity \Rightarrow high particle rate
 - \Rightarrow occupancy and radiation dose increase when approaching the IP
 - \Rightarrow prevents from approaching the IP as close as desired
 - \triangleright situation will worsen when collision energy \rightarrow 1 TeV
 - \Rightarrow 3DIT are expected to allow reducing the VD inner radius
 - and keeping high precision vertexing at the highest collision energy
- Optimum between physics related requirements and limitations due to running conditions ?
 - \Rightarrow Substantially different for ILC and LHC: different pixel technologies to develop \rightarrowtail 3DIT
 - \hookrightarrow Identify common and complementary ILC-LHC objectives

ILC-VD ... in High Resolution Pixel Detectors for Charged Particle Detection

- ILC physics requires finding evidence of very short lived particles which decay \gtrsim 100 μm away from the Interaction Point (e.g. Higgs ightarrow charmed mesons) , inside the vacuum beam pipe (R \sim 15 mm)
 - \rightarrow reconstruct trajectories of electrically charged daughter particles with high resolution pixel detectors installed as close as possible to the Interaction Point

- Major requirements :
 - $\diamond~$ Resolution on vertex position \sim O(10) μm
 - ◊ Ionising radiation : O(100) kRad / yr

- \diamond O(10³) pixels /cm²/10 μs (inner layer)
- $\diamond \quad \text{Non-ionising radiation} \lesssim O(10^{11}) n_{eq} / \text{cm}^2 / \text{yr from } e_{BS}^{\pm} \\ \text{and} \lesssim O(10^{10}) n_{eq} / \text{cm}^2 / \text{yr from neutron gas}$

• How to achieve high spatial resolution : small pixels (pitch) and reduced material (\equiv weight)

$$\,\, \hookrightarrow \,$$
 Figure of merit : $\sigma_{f ip} = {f a} \oplus {f b}/{f p_t} \qquad
ightarrow \,$

Accelerator	a (μm)	${f b}$ ($\mu m \cdot GeV$)
LEP	25	70
SLD	8	33
LHC	12	70
RHIC-II	13	19
ILC	< 5	< 10

b governs low momentum (\sim 30 % particles < 1 GeV/c) **a** governs high momentum

• Expectations from 3DIT :

- \diamond high degree of functionnality integration in very small pixels \rightarrowtail \mathbf{a} \searrow
- \diamond thinning and connection technologies allowing very low material budget ightarrow \mathbf{b} \searrow

Beam time structure : \sim 1 ms train (\sim 3000 BX) every 200 ms \Rightarrow duty cycle \sim 1/200

- ▷ 2 consequences :
 - 1) Switching off the sensors between trains may allow average power reduction by factor of ~ 100
 - ⇒ essential for material budget (modest cooling) also: room for high density functionnalities integrated inside sensitive area (pixels)
 - 2) Only a few BX contain relevant physics info.
 but all contain large amounts of beam background

 → remove unrelevant BX !

Electro-Magnetic Interference from bunch wake field :

- \diamond beam delivery elements may be source of very short λ EM field
- \diamond specific sensor architecture : store signal during train (\sim 1 ms) and read out after train
 - \Rightarrow large nb of memories \Rightarrow short time slices \Rightarrow better background rejection

 \hookrightarrow 3DIT may allow a big step towards this goal

Example of Basic Vertex Detector Design features

Vertex Detector geometries:

ILC-VD

 \triangleright ILD : \geq 5 (or 3 pairs of) long cylind. layers (R = 15–60 mm),

▷ SiD: shorter barrel & fw/bw disks

■ Possibly: room temperature operation (modest cooling → minimise material)

Pixel pitch \sim 5–25 μm (inner layer) $\Rightarrow \gtrsim$ 0.5 billion pixels equipping \gtrsim 0.3 m^2

Ultra thin layers: \sim 0.1–0.2 % X $_0$ /layer (STAR-HFT: \leq 0.3 % X $_0$)

Very low P $_{diss}^{mean}$: << 100 W (exact value depends on duty cycle)

Fake hit rate $\leq 10^{-5} \Rightarrow$ whole detector \cong close to 1 GB/s (mainly from e_{BS}^{\pm})

ILC-VD ... in On-Going Pixel Sensor R&D for the ILC Vertex Detector

• Mature pixel technologies (e.g. adapted to LHC or to SLD) are not adequate

 \Rightarrow several new technologies are being developed since several years

- \simeq CCDs (UK, Japan) : continuous and delayed read-out architectures
- ← CMOS Sensors (France, Italy, USA) : continuous and delayed read-out architectures

• Example of pixel architectures with integrated signal processing:

• None of the present designs offers simultaneously desired pixel size, time resolution & data compression

 \hookrightarrow Major motivation to tame 3DIT and exploit their miniaturisation capabilities

Using 3DIT to Improve CMOS Sensor Performances

- 3DIT are expected to be particularly beneficial for CMOS sensors :
 - combine different fab. processes

ILC-VD

- alleviate constraints on transistor type inside pixel
- Split signal collection and processing functionnalities :
 - Tier-1: charge collection system
 - Tier-3: mixed and digital signal processing
- Tier-2: analog signal processing
- Tier-4: data formatting (electro-optical conversion ?)
- Use best suited technology for each Tier :
 - Tier-1: epitaxy, deep N-well ? Tier-2: analog, low leakage current, process (nb of metal layers)
 - Tier-3 & -4 : digital process (nb of metal layers), feature size \rightarrow fast laser (VOCSEL) driver, etc.

- Minimise multiple scattering inside detector material wherever possible (b \searrow)
 - ↔ thickness, amount and choice of material for mechanical support, gluing, electrical connexions,
 thermal conductivity, power dissipation (avoid active cooling), ...
- Goal : < 0.2 % radiation length / layer (including chip + support + services) (\Leftrightarrow < 200 μm of silicon)
- Presently \lesssim 0.3 % seems achievable (STAR vertex detector)
- STAR ladder : kapton cable contributes with \sim 0.1 % and carrier with \sim 0.1 % of radiation length
 - $\Rightarrow \text{ replace them with a luminised CVD diamond ?}$ $\hookrightarrow bonus in thermal transport$

Benefits from 3DIT for System Integration Aspects

- Minimise insensitive areas inside fiducial volume and extend the sensitive area to small polar angles
 - \diamond CMOS sensors: mixed and digital μ circuits at sensor edge
 - ◊ DEPFETs: steering chips bonded along ladder
 - ♦ End of ladder electronics

- (CMOS) Sensor fabrication yield is a concern
 - \Rightarrow diced sensors prefered to stitched sets of 5–10 sensors
- ightarrow inactive zones (twice \gtrsim 40 μm wide) at sensor edge from dicing
 - \Rightarrow can these zones be reduced to \lesssim few μm with plasma etching ?

• Effects of vias on material budget:

 \diamond Ex: 20x20 μm^2 pitch \rightarrowtail 250,000 pixels/cm^2 \diamond 2 vias/pixel (Ø = 2 μm , L = 20 μm)

 \Rightarrow 0.01 % if made of tungsten \cong 10 % of full ladder material budget !!! (concern for ILC mainly)

 \Rightarrow Sensor architecture should be guided by the necessity to minimise :

rightarrow pixel density rightarrow via density rightarrow number of tiers

- Effect of highly integrated signal processing functionnalities:
 - ♦ Ex (CMOS sensors) : present col. // design features P(pixel) ~ 200 μ W & P(discri) ~ 300 μ W ▷ If this would propagate to 250,000 pixels/cm² ⇒ P(chip) ≥ 100 W/cm² during train !!! ⇒ ~ O(1) W/cm² in average (chip off between trains) ⇒ several kW fro the full detector !!!!

\Rightarrow Sensor architecture should be guided by the necessity to minimise power consumption:

pixel and signal processing architecture

rightarrow power cycling capability (essential for ILC)

- 2008 : explore, and exploit some of the, possibilites offered by industry and semi-academic labs
 - ♦ Commercial multi-tier chip design and packaging, e.g. 2-tier device for sensing & signal proc. (see R.Y.)
 - ← Learn designing in CMOS technologies involved → "new" fab. processes (e.g. IBM 130 nm) Concern: substrate characteristics (sensitive volume)
 - ◇ Investigate technology : via characteristics, parasitic couplings, radiation tolerance, power cycling, ...
 - ◇ Investigate system integration aspects : edgeless dicing, CMOS sensors / diamond, sensor thinning, ...
 - ♦ Explore possibilities to combine wafers from different fab. processes (e.g. AMS-0.35 OPTO with IBM-0.13)
 - ♦ Others ???

• 2009: start developing architectures adapted to ILC vertex detector

- \diamond Step 1: combine tier adapted to charged particle detection with tier hosting signal processing μ circuits
- ♦ Step 2: design a 2-tier chip with integrated signal storage (1 ms) and delayed (low power) read-out
- ♦ Step 3: design a 3-tier chip with integrated data formatting
- ♦ Develop system integration aspects for an ILC ladder
- ♦ Investigate radiation tolerance and power cycling

ILC vertex detector provides a very demanding framework for pixel detector R&D

 \Rightarrow unprecedented performances ambitionned \rightarrow difterent from sLHC target values and time line

- The R&D addresses two areas: Pixel array &System integration performances
- Natural choice for ILC sensor architecture exploits beam time structure \rightarrow power saving, no EMI :
 - \triangleright thin sensitive volume \rightarrow Tier-1
 - \triangleright signal storage during 1 ms with 10 μs resolution \rightarrow Tier-2
 - \triangleright delayed read-out and data formatting \rightarrow Tier-3 (+ 4 ?)
- ILC specific concerns:
 - \triangleright power cycling \mapsto reduce (time averaged) power by factor of $O(100) \mapsto$ mechanical stress ????
 - \triangleright material budget \rightarrow full ladder \cong 0.1–0.2 % X₀ (nb of vias ...)
- Several common issues with sLHC \Rightarrow common or complementary actions:
 - > 3D technological aspects: via characteristics, parasitic couplings, rad. tolerance, design tricks/rules/kits
 - \triangleright design in dedicated CMOS fab. technologies : e.g. IBM-0.13 \rightarrow "building blocks" ???
 - \triangleright explore the (fast moving) "3DIT landscape" \rightarrow network for common knowledge building

 \Rightarrow Optimise complementarity against redundancy