

Detector Requirements For FEL and Synchrotron Sources

Heinz Graafsma

Photon Science Detector Systems

DESY-Hamburg; Germany

Vertical Integration Workshop; 7-8 April 2008; Ringberg Castle; Germany

- The Synchrotron Revolution
- The (X-ray) Free Electron Laser
- The impact on the detector requirements
- One solution: Hybrid Pixel Array Detectors
- Some wishes or are they dreams?
- A provocative observation/statement

Light Sources in Europe

Light Sources in Hamburg

LMHOLTZ

Timing modes in SR; ~100 psec pulses

HELMHOLTZ

Beam mode & characteristics	Intensity	Lifetime	Beam			
Uniform filling mode 992 bunches are equally distributed around the whole circumference of the storage ring. Refill time: ~3 minutes	200 mA	60 hours	Low emittance (4 nm) with 1% coupling	3 ns pulse spacing		
2*1/3 filling mode 2 times one third of the storage ring is	200 mA	55 hours	Low emittance	3 ns pulse spacing		
An emi Top up 7/8 + 1 A train Ring c (0.23 n Both e mA sin The re center Filling Hybri Orusia	y t nu oft	used a ous s en "in	as ou na	a rce; ging"		
diametrically opposed to a ~ 196 mA multi-bunch beam composed of 24 groups of bunches spread over 3/4 of the storage ring circumference. Filling time: ~ 10 minutes.		resulting lifetime ~ 40 hours	(4 nm) with 1 % coupling.	Stems		
16 bunch filling mode 16 highly populated and equally spaced bunches. Purity < 10 ⁻⁷ Filling time: ~5 mins.	90 mA	10 hours	Low emittance (4 nm) with 2% coupling	200 ns pulse spacing		
4*10 filling mode 4 equidistant bunches _ 10 mA/bunch Filling time: ~ 5 minutes	40 mA	6 hours	Low emittance (4 nm) with 2% coupling.	800 ns pulse spacing		

– Indirect detection ==> losses & spreading

MHOLTZ

GEMEINSCHA

Integrating detector=> noise & information loss

Timing modes in SR; ~100 psec pulses

LMHOLTZ

The Medipix

Reality

XFS Module

XFS Module

XFS Module Specification

Operate 2x4 (8) Chips per Module. ~78 x 39 mm²

Hybridization

- Cut the sensor as close as possible
- Use thinned readout chips
- Stay within the exact n-fold pixel pitch

Special Dicing

The PILATUS 6M of the SLS@PSI

Vertical Integration Workshop; 7 - 8 Aril 2008; Ringberg Castle; Germany - Heinz Graafsma; DESY-Hamburg

R&D: RELAXD

High **RE**solution Large Area X-ray Detector

PANalytical NIKHEF CANBERRA IMEC 2006-2010

Four-side tilable Quad-Medipix modules Fast serial readout at 3.125 Gigabit/s

http://www.nikhef.nl/pub/experiments/medipix

Courtesy Jan Visschers; NIKHEF

Courtesy Jan Visschers; NIKHEF

Ball-Grid-Array replaces wire bonds Robust, Easy Carrier design, better HF, Thermal conductivity, Cooling

Zdenek Vykydal

Courtesy Jan Visschers; NIKHEF

First Through-Si via's Made by IMEC in dummy wafers

Vertical Integration Workshop; 7 - 8 Aril 2008; Ringberg Castle; Germany - Heinz Graafsma; DESY-Hamburg

First Prototype

Chip Carrier Still Dummy

Heat Flow Simulation

Red-Green is ~ 3 Celsius

Micro-Patterned Gaseous Detectors

Drift gap.

Amplification gap

8kU

X300

50 Mm

11 22 SEI

Courtesy Jan Visschers; NIKHEF

TWINGRID (Mesa+, U-Twente)

Courtesy Jan Visschers; NIKHEF

Vertical Integration Workshop; 7 - 8 Aril 2008; Ringberg Castle; Germany - Heinz Graafsma; DESY-Hamburg

- For Synchrotron's large HPAD's do now exist (even commercially: PILATUS).
- They will become excellent workhorses, but not cover all fields at SRs.
- Vertical integration initiatives have started.
- Why develop new detectors for Free-Electron-Lasers?

Light Sources in Hamburg

How to get it?

ELMHOLTZ

- What is the difference between storage rings and FEL's?
- What is SASE?

Hard X-ray SASE Free Electron Lasers

Experimental Hall Building

Vertical Integration Workshop; 7-8 April 2008; Ringberg Castle; Germany

Where is the challenge?

Where is the challenge?

Challenges:

- up to 30,000 bunches per second
- very high intensities (up to $10^{12}\gamma$ /bunch)
- "instantaneous" energy deposition
- very high repetition rates (up to 5 MHz)
- large variability
 - pulse patterns
 - pulse to pulse variations

- 9 orders increase in peak brilliance →
 experimental details are difficult to predict
- Femto-second time resolution
- Single shot imaging, with 5 MHz repetition rate
- Data volumes could get enormous

HELMHOLTZ

Image reconstructed from an ultrafast FEL diffraction pattern

Minimum requirements:

- 1k x 1k pixels (2k x 2k would be better)
- 10⁴ dynamic range
- noise free detection
 (single photon detection)
- < 200 micron pixels (100 is better)
- record image for every (useful) shot
- 80 % efficiency
- central hole
- minimal dead areas

• ...

- High radiation dose at small angles: 10⁴ photons per pixel per shot → over 3 years 1 GGy
 - Radiation damage of silicon sensor
 - Radiation damage of underlying electronics
 - ➔ Program for radiation damage studies needed
- High radiation dose at specific pixels: 10⁵ photons in 10 x 10 microns ("charge explosion")
 - 10⁵ photons of 12 keV create: (10⁵ x 12 x10³)/ 3.6 = 3 x 10⁸ electronhole pairs → "plasma effect" gives shielding of drift field → diffusion before drift → peak broadening (space and time).

MHOLTZ

- PSI/SLS: chip design; interconnect and module assembly
- Uni-Bonn: chip design
- Uni-Hamburg: Radiation damage tests, "charge explosion studies; and sensor design
- DESY-Hamburg: chip design, interface and control electronics, mechanics; overall coordination

Hybrid Pixel Array Detector (HPAD)

LMHOLTZ

Dynamic Range

Integrator gain calculations:

MHOLTZ

- effective analog resolution \geq 8 bit
- keep analog resolution always better than "quantum noise" √n_{ph}
- maximum signal $\geq 10^4$ photons

range	norm. gain	Cf [fF]	max n _{ph}
1	1	100	256
2	1/16	1600	4096
3	1/64	6400	16384

ELMHOLTZ

GEMEINSCHAFT

Implementation of the Variable Slope Integrator

output voltage as a result of the dynamic gain switching

MHOLTZ

GEMEINSCHAFT

output noise for two different input signals (preliminary)

Output Voltage

Store charge in analogue pipeline for 100 msec; "loss free"

Basic Parameters HPAD

- 200 µm pixels
- 5 MHz framing speed
- Single photon sensitivity at 12 keV
- 2 x 10⁴ dynamic range, using 3 switched gains
- 400 image storage depth
- 128 x 256 monolithic tiles
- Flat detector

Current status and planning

- ASIC Test structures were submitted last week 0.13 micron MOSIS
- Detector response and science simulations started
- Irradiations done up to 1 GGy (this is a lot!!!!)
- Simulations on charge explosion started
- Equipment for experiments on charge explosion in place

Guillaume Potdevin; DESY

Some Dreams

Dream on hon....

Vertical Integration

50

Dreams....

Vertical Integration Workshop; 7 - 8 Aril 2008; Ringberg Castle; German

- The interconnection of different technologies like for the sensors, analogue, and digital ASICs offers obviously a lot of advantages but R&D and prototyping in this field can be very cost intensive.
- One of the goals of this workshop is the <u>formation of a</u> <u>common platform</u> for the R&D on vertically integrated pixel detector systems which then would give the opportunity to share the experience and open new possibilities for the organization of common projects...

... for LHC and ILC detector development.

"And the world remains divided?"