

(日) (同) (三) (三)

 arbitrary choice of background configurations, compactification data, etc.

→ Ξ →

- arbitrary choice of background configurations, compactification data, etc.
- most regimes not accessible by computational tools (perturbative expansions in string coupling, α' corrections around exactly solvable CFTs)

A B A A B A

- arbitrary choice of background configurations, compactification data, etc.
- most regimes not accessible by computational tools (perturbative expansions in string coupling, α' corrections around exactly solvable CFTs)

String Phenomenology

• • = • • = •

- arbitrary choice of background configurations, compactification data, etc.
- most regimes not accessible by computational tools (perturbative expansions in string coupling, α' corrections around exactly solvable CFTs)

String Phenomenology

• classify different setups in ST which lead to SM-like physics

(日) (周) (三) (三)

- arbitrary choice of background configurations, compactification data, etc.
- most regimes not accessible by computational tools (perturbative expansions in string coupling, α' corrections around exactly solvable CFTs)

String Phenomenology

- classify different setups in ST which lead to SM-like physics
- within each setup, construct examples with low energy physics as close as possible to SM

(日) (周) (三) (三)

D-branes

Dp-branes \equiv (p+1)-dimensional subspaces on which open strings can end

★ ∃ >

closed sector \longrightarrow dynamics of the vacuum

Dp-branes \equiv (p+1)-dimensional Dirichlet subspaces on which open strings can end Neumann closed sector \rightarrow dynamics of the vacuum open sector \rightarrow dynamics of the object

e.g. single type II Dp-brane in flat 10d, massless modes

• U(1) gauge boson localized on the brane (enhanced to U(N) with multiple branes and Chan-Paton indexes)

closed sector \rightarrow dynamics of the vacuum open sector \rightarrow dynamics of the object

e.g. single type II Dp-brane in flat 10d, massless modes

- U(1) gauge boson localized on the brane (enhanced to U(N) with multiple branes and Chan-Paton indexes)
- 9-p real scalars + fermions = Goldstone bosons/Goldstinos of translational invariance/SUSY broken by D-brane

Dirichlet

Neumann

closed sector \rightarrow dynamics of the vacuum open sector \longrightarrow dynamics of the object

e.g. single type II Dp-brane in flat 10d, massless modes

- U(1) gauge boson localized on the brane (enhanced to U(N) with multiple branes and Chan-Paton indexes)
- 9-p real scalars + fermions = Goldstone bosons/Goldstinos of translational invariance/SUSY broken by D-brane

RR charged, via $\int_{W_{n+1}} C_{p+1}$ (see anomaly cancellation)

Dirichlet

Neumann

closed sector \rightarrow dynamics of the vacuum open sector \rightarrow dynamics of the object

e.g. single type II Dp-brane in flat 10d, massless modes

- U(1) gauge boson localized on the brane (enhanced to U(N) with multiple branes and Chan-Paton indexes)
- 9-p real scalars + fermions = Goldstone bosons/Goldstinos of translational invariance/SUSY broken by D-brane

RR charged, via $\int_{W_{n+1}} C_{p+1}$ (see anomaly cancellation) Flat Dp-branes preserve 1/2 of the 32 supercharges of type II \longrightarrow BPS state \Rightarrow charge-tension relation

< ロト < 同ト < ヨト < ヨト

• gravity in 10d $M_4 \times X_6$

<ロ> (日) (日) (日) (日) (日)

- gravity in 10d $M_4 \times X_6$
- gauge interactions in a lower dimensional space $M_4 \times \Sigma_{p-3}$ (Σ_{p-3} = closed 3-cycle on X_6)

- **(())) (())) ())**

- gravity in 10d $M_4 \times X_6$
- gauge interactions in a lower dimensional space $M_4 \times \Sigma_{p-3}$ (Σ_{p-3} = closed 3-cycle on X_6)

- gravity in 10d $M_4 \times X_6$
- gauge interactions in a lower dimensional space $M_4 \times \Sigma_{p-3}$ (Σ_{p-3} = closed 3-cycle on X_6)

$$\underbrace{\int \mathrm{d}^{10} x \frac{M_s^8}{g_s^2} R_{10d}}_{\text{bulk}}$$

- gravity in 10d $M_4 \times X_6$
- gauge interactions in a lower dimensional space $M_4 \times \Sigma_{p-3}$ (Σ_{p-3} = closed 3-cycle on X_6)

$$\underbrace{\int \mathrm{d}^{10} x \frac{M_s^8}{g_s^2} R_{10d}}_{\text{bulk}} + \underbrace{\int \mathrm{d}^{p+1} x \frac{M_s^{p-3}}{g_s} F_{(p+1)d}^2}_{\text{brane}}$$

- gravity in 10d $M_4 imes X_6$
- gauge interactions in a lower dimensional space $M_4 \times \Sigma_{p-3}$ (Σ_{p-3} = closed 3-cycle on X_6)

then compactify and split $V_{X_6} = V_\Sigma V_\perp$ to obtain (note $g_{YM} \sim V_\Sigma^{-1/2}$)

$$M_{PI}^2 g_{YM}^2 = \frac{M_s^{11-p} V_\perp}{g_s}$$

イロト 不得下 イヨト イヨト

- gravity in 10d $M_4 imes X_6$
- gauge interactions in a lower dimensional space $M_4 \times \Sigma_{p-3}$ (Σ_{p-3} = closed 3-cycle on X_6)

then compactify and split $V_{X_6} = V_\Sigma V_\perp$ to obtain (note $g_{YM} \sim V_\Sigma^{-1/2}$)

$$M_{Pl}^2 g_{YM}^2 = \frac{M_s^{11-p} V_\perp}{g_s}$$

i.e. generate large Planck mass in 4d with low string scale, by increasing $V_{\perp} \longrightarrow$ hierarchy problem recast in geometrical terms

• start with bosons; NN, ND, DN, DD \rightarrow only $\nu = \#$ (ND+DN) matters (even number)

イロト イポト イヨト イヨト

- start with bosons; NN, ND, DN, DD \rightarrow only $\nu = \#$ (ND+DN) matters (even number)
- write Fourier expansions for X^µ(z, z̄) in the 4 cases (DN and ND have half integer moding)

(日) (周) (三) (三)

- start with bosons; NN, ND, DN, DD \rightarrow only $\nu = \#$ (ND+DN) matters (even number)
- write Fourier expansions for X^μ(z, z̄) in the 4 cases (DN and ND have half integer moding)
- to get fermions supersymmetrize, and consider

$$\delta X^{\mu} = ar{\epsilon} \psi^{\mu} \longrightarrow \, \mathsf{R} \, \mathsf{vs} \, \mathsf{NS}$$

イロト イポト イヨト イヨト

- start with bosons; NN, ND, DN, DD \rightarrow only $\nu = \#$ (ND+DN) matters (even number)
- write Fourier expansions for X^µ(z, z̄) in the 4 cases (DN and ND have half integer moding)
- to get fermions supersymmetrize, and consider

$$\delta X^{\mu} = \bar{\epsilon} \psi^{\mu} \longrightarrow \, {
m R} \, {
m vs} \, {
m NS}$$

• zero-point NS energy:
$$(8 - \nu) \left(-\frac{1}{24} - \frac{1}{48} \right) + \nu \left(\frac{1}{24} + \frac{1}{48} \right)$$

・ロン ・四 ・ ・ ヨン ・ ヨン

- start with bosons; NN, ND, DN, DD \rightarrow only $\nu = \#$ (ND+DN) matters (even number)
- write Fourier expansions for X^μ(z, z̄) in the 4 cases (DN and ND have half integer moding)
- to get fermions supersymmetrize, and consider

$$\delta X^{\mu} = ar{\epsilon} \psi^{\mu} \longrightarrow \; {\sf R} \; {\sf vs} \; {\sf NS}$$

• zero-point NS energy:
$$(8 - \nu) \left(-\frac{1}{24} - \frac{1}{48} \right) + \nu \left(\frac{1}{24} + \frac{1}{48} \right)$$

SUSY breaking condition

$$Q_{lpha}+P ilde{Q}_{lpha}=Q_{lpha}+P(P^{-1}P') ilde{Q}_{lpha}$$

 \rightarrow write $P^{-1}P' = e^{i\pi(J_1+...+J_{\nu/2})}$, where each $e^{i\pi J}$ has eigenvalues $\pm i \rightarrow$ SUSY unbroken for v = multiple of 4

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

(日) (同) (三) (三)

 6₁6₁ → U(n₁) gauge bosons, 3 real adjoint scalars and fermion superpartners propagating over 7d volume of the D6₁ brane

・ロン ・四 ・ ・ ヨン ・ ヨン

- 6₁6₁ → U(n₁) gauge bosons, 3 real adjoint scalars and fermion superpartners propagating over 7d volume of the D6₁ brane
- $6_26_2 \longrightarrow \text{similar statement}$

- 6₁6₁ → U(n₁) gauge bosons, 3 real adjoint scalars and fermion superpartners propagating over 7d volume of the D6₁ brane
- $6_2 6_2 \longrightarrow \text{similar statement}$
- 6₁6₂ + 6₂6₁ → 4d chiral fermion transforming in the (n₁, n
 ₂) of U(n₁) × U(n₂) + scalar fields with masses depending on the angles: Why is this the case? Consider

< ロト < 同ト < ヨト < ヨト

- 6₁6₁ → U(n₁) gauge bosons, 3 real adjoint scalars and fermion superpartners propagating over 7d volume of the D6₁ brane
- $6_26_2 \longrightarrow \text{similar statement}$
- 6₁6₂ + 6₂6₁ → 4d chiral fermion transforming in the (n₁, n
 ₂) of U(n₁) × U(n₂) + scalar fields with masses depending on the angles: Why is this the case? Consider

• for all $\theta_j = 0, \ \psi^i, \ i = 1, \dots, 8 \xrightarrow{GSO} 8_C$: too many components to be chiral in 4d

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ - 画 - のへ⊙

- 6₁6₁ → U(n₁) gauge bosons, 3 real adjoint scalars and fermion superpartners propagating over 7d volume of the D6₁ brane
- $6_26_2 \longrightarrow \text{similar statement}$
- 6₁6₂ + 6₂6₁ → 4d chiral fermion transforming in the (n₁, n
 ₂) of U(n₁) × U(n₂) + scalar fields with masses depending on the angles: Why is this the case? Consider

- for all $\theta_j = 0, \ \psi^i, \ i = 1, \dots, 8 \xrightarrow{GSO} 8_C$: too many components to be chiral in 4d
- for non zero angles, $\psi^i, \ i = 1, \dots, 4 \xrightarrow{GSO}$ chiral fermion in 4d.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Simple configuration $T^6 = T^2 \times T^2 \times T^2$, with 3-cycles Π_a factorized as products of 1-cycles and (n_a^i, m_a^i) wrapping numbers in horizontal and vertical directions:

Simple configuration $T^6 = T^2 \times T^2 \times T^2$, with 3-cycles Π_a factorized as products of 1-cycles and (n_a^i, m_a^i) wrapping numbers in horizontal and vertical directions:

$$\begin{cases} \text{intersection} \\ \text{number} \end{cases} = I_{ab} = \prod_{i=1}^{3} (n_a^i m_b^i - m_a^i n_b^i)$$

Simple configuration $T^6 = T^2 \times T^2 \times T^2$, with 3-cycles Π_a factorized as products of 1-cycles and (n_a^i, m_a^i) wrapping numbers in horizontal and vertical directions:

$$\begin{cases} \text{intersection} \\ \text{number} \end{cases} = I_{ab} = \prod_{i=1}^{3} (n_a^i m_b^i - m_a^i n_b^i)$$

 \rightarrow 3-homology class [Π_a] of 3-cycles $\Pi_a \approx$ vector of RR charges for the D6-brane

$$[\Pi_a] = \bigotimes_{i=1}^3 (n_a^i[a_i] + m_a^i[b_i])$$
$$I_{ab} = [\Pi_a] \cdot [\Pi_b]$$

Simple configuration $\overline{T^6} = \overline{T^2 \times T^2 \times T^2}$, with 3-cycles Π_a factorized as products of 1-cycles and (n_a^i, m_a^i) wrapping numbers in horizontal and vertical directions:

$$\begin{cases} \text{intersection} \\ \text{number} \end{cases} = I_{ab} = \prod_{i=1}^{3} (n_a^i m_b^i - m_a^i n_b^i)$$

 \rightarrow 3-homology class [Π_a] of 3-cycles $\Pi_a \approx$ vector of RR charges for the D6-brane

$$[\Pi_a] = \bigotimes_{i=1}^3 (n_a^i[a_i] + m_a^i[b_i])$$
$$I_{ab} = [\Pi_a] \cdot [\Pi_b]$$

Spectrum: given N_a , $[\Pi_a]$, (n_a^i, m_a^i) , we have

Simple configuration $T^6 = T^2 \times T^2 \times T^2$, with 3-cycles Π_a factorized as products of 1-cycles and (n_a^i, m_a^i) wrapping numbers in horizontal and vertical directions:

$$\begin{cases} \text{intersection} \\ \text{number} \end{cases} = I_{ab} = \prod_{i=1}^{3} (n_a^i m_b^i - m_a^i n_b^i)$$

 \rightarrow 3-homology class [Π_a] of 3-cycles $\Pi_a \approx$ vector of RR charges for the D6-brane

$$[\Pi_a] = \bigotimes_{i=1}^3 (n_a^i[a_i] + m_a^i[b_i])$$
$$I_{ab} = [\Pi_a] \cdot [\Pi_b]$$

Spectrum: given N_a , $[\Pi_a]$, (n_a^i, m_a^i) , we have

 6_a6_a → 4d U(N_a) gauge bosons, 6 real adjoint scalars and 4 adjoint Majorana fermions → 4d N = 4 SUSY vector multiplet

Simple configuration $T^6 = T^2 \times T^2 \times T^2$, with 3-cycles Π_a factorized as products of 1-cycles and (n_a^i, m_a^i) wrapping numbers in horizontal and vertical directions:

$$\begin{cases} \text{intersection} \\ \text{number} \end{cases} = I_{ab} = \prod_{i=1}^{3} (n_a^i m_b^i - m_a^i n_b^i)$$

 \rightarrow 3-homology class [Π_a] of 3-cycles $\Pi_a \approx$ vector of RR charges for the D6-brane

$$[\Pi_a] = \bigotimes_{i=1}^3 (n_a^i[a_i] + m_a^i[b_i])$$
$$I_{ab} = [\Pi_a] \cdot [\Pi_b]$$

Spectrum: given N_a , $[\Pi_a]$, (n_a^i, m_a^i) , we have

- 6_a6_a → 4d U(N_a) gauge bosons, 6 real adjoint scalars and 4 adjoint Majorana fermions → 4d N = 4 SUSY vector multiplet
- $6_a 6_b + 6_b 6_a \longrightarrow I_{ab}$ replicated chiral left-handed fermions in the bi-fundamental $(N_a, \bar{N_b})$

RR tadpole cancellation, cf. coupling $\int_{W_{p+1}} C_{p+1}$, requires (see also Gauss law)

$$[\Pi_{tot}] = \sum_{a} [\Pi_{a}] = 0$$

A (10) F (10) F (10)

RR tadpole cancellation, cf. coupling $\int_{W_{p+1}} C_{p+1}$, requires (see also Gauss law)

$$[\Pi_{tot}] = \sum_{a} [\Pi_{a}] = 0$$

Also, RR tadpole cancellation \implies cancellation of 4d chiral anomalies.

RR tadpole cancellation, cf. coupling $\int_{W_{p+1}} C_{p+1}$, requires (see also Gauss law)

$$[\Pi_{tot}] = \sum_{a} [\Pi_{a}] = 0$$

Also, RR tadpole cancellation \implies cancellation of 4d chiral anomalies.

RR tadpole cancellation, cf. coupling $\int_{W_{p+1}} C_{p+1}$, requires (see also Gauss law)

$$[\Pi_{tot}] = \sum_{a} [\Pi_{a}] = 0$$

Also, RR tadpole cancellation \implies cancellation of 4d chiral anomalies.

any U(1) gauge boson with gauge coupling $B \wedge F$ gets massive:

$$\int_{D6} \sum_{p} C_{p} \wedge \operatorname{tr} \exp F \longrightarrow \int_{D6} \sum C_{5} \wedge \underbrace{\operatorname{tr} F}_{\operatorname{only} U(1)} \xrightarrow{\mathsf{KK}} \int_{M_{4}} B_{2} \wedge \operatorname{tr} F$$

RR tadpole cancellation, cf. coupling $\int_{W_{p+1}} C_{p+1}$, requires (see also Gauss law)

$$[\Pi_{tot}] = \sum_{a} [\Pi_{a}] = 0$$

Also, RR tadpole cancellation \implies cancellation of 4d chiral anomalies.

any U(1) gauge boson with gauge coupling $B \wedge F$ gets massive:

$$\int_{D6} \sum_{p} C_{p} \wedge \operatorname{tr} \exp F \longrightarrow \int_{D6} \sum C_{5} \wedge \underbrace{\operatorname{tr} F}_{\operatorname{only} U(1)} \xrightarrow{\operatorname{KK}} \int_{M_{4}} B_{2} \wedge \operatorname{tr} F$$

Since $B_2 \xrightarrow{KK} C_5 \to F_6 \to *F_6 = F_4 \to C_3 \xrightarrow{KK} \phi$, such U(1)'s disappear as gauge symmetries from low-energy effective theory, but remain as global symmetries, unbroken at perturbative level

RR tadpole cancellation, cf. coupling $\int_{W_{p+1}} C_{p+1}$, requires (see also Gauss law)

$$[\Pi_{tot}] = \sum_{a} [\Pi_{a}] = 0$$

Also, RR tadpole cancellation \implies cancellation of 4d chiral anomalies.

any U(1) gauge boson with gauge coupling $B \wedge F$ gets massive:

$$\int_{D6} \sum_{p} C_{p} \wedge \operatorname{tr} \exp F \longrightarrow \int_{D6} \sum C_{5} \wedge \underbrace{\operatorname{tr} F}_{\operatorname{only} U(1)} \xrightarrow{\operatorname{KK}} \int_{M_{4}} B_{2} \wedge \operatorname{tr} F$$

Since $B_2 \xrightarrow{KK} C_5 \to F_6 \to *F_6 = F_4 \to C_3 \xrightarrow{KK} \phi$, such U(1)'s disappear as gauge symmetries from low-energy effective theory, but remain as global symmetries, unbroken at perturbative level ***Some linear combinations can remain massless, and be used to

construct e.g. hypercharge Q_Y

Nicolò Piazzalunga (Univ. Padova)

イロト 不得下 イヨト イヨト 三日

$\checkmark\,$ reproduce chiral 4d fermions + gravity at low energy

- \checkmark reproduce chiral 4d fermions + gravity at low energy
- \checkmark fermion-Higgs coupling from open string instantons \longrightarrow texture for

`.Q1

- $\sqrt{}$ reproduce chiral 4d fermions + gravity at low energy
- \checkmark fermion-Higgs coupling from open string instantons \longrightarrow texture for

\Q³_\Q²_L

VQL SU(2)

 \times simple models: they are non-SUSY and get some extra matter content, due to RR tadpole cancellation condition \longrightarrow more advanced models including orientifold planes

- \checkmark reproduce chiral 4d fermions + gravity at low energy
- $\sqrt{}$ fermion-Higgs coupling from open string instantons \longrightarrow texture for

\Q³_\Q²_L

VQL SU(2)

Yukawa couplings $\sim e^{-Area}$ $\sum_{su(3)}^{U_{3}} \sum_{su(3)}^{U_{1}} \sum_{su(3)}^{U_{1}} (go to F-theory for better results)$

 \times simple models: they are non-SUSY and get some extra matter content, due to RR tadpole cancellation condition \longrightarrow more advanced models including orientifold planes

•
$$\frac{1}{g_{YM,a}^2} = \frac{V_{\Pi_a} M_s^3}{g_s}$$
 no natural gauge coupling unification

- \checkmark reproduce chiral 4d fermions + gravity at low energy
- $\sqrt{}$ fermion-Higgs coupling from open string instantons \longrightarrow texture for

`,Q³_L

Yukawa couplings $\sim e^{-Area}$ $(U_3, U_2, U_1, U_1, U_1)$ better results) (go to F-theory for better results)

- \times simple models: they are non-SUSY and get some extra matter content, due to RR tadpole cancellation condition \longrightarrow more advanced models including orientifold planes
- $\frac{1}{g_{YM,a}^2} = \frac{V_{\Pi_a} M_s^3}{g_s}$ no natural gauge coupling unification
- × (big problem) lack of a measure in the space of possible states $(N_a, [\Pi_a], (n_a^i, m_a^i)) \longrightarrow$ arbitrary choice vs anthropic principle

- 本間 と えき と えき とうき

- \checkmark reproduce chiral 4d fermions + gravity at low energy
- \checkmark fermion-Higgs coupling from open string instantons \longrightarrow texture for

`\Q³_L

Yukawa couplings $\sim e^{-Area}$ $\sum_{su(3)}$ $\sum_{su(3)}$ $\sum_{su(3)}$ $\sum_{su(3)}$ $\sum_{su(3)}$ $\sum_{su(3)}$ (go to F-theory for better results)

- \times simple models: they are non-SUSY and get some extra matter content, due to RR tadpole cancellation condition \longrightarrow more advanced models including orientifold planes
- $\frac{1}{g_{YM,a}^2} = \frac{V_{\Pi_a} M_s^3}{g_s}$ no natural gauge coupling unification
- × (big problem) lack of a measure in the space of possible states $(N_a, [\Pi_a], (n_a^i, m_a^i)) \longrightarrow$ arbitrary choice vs anthropic principle

Thank you for your attention!