Studies of GERDA phase II detector signals

Andrea Lazzaro

IMPRS workshop on July 2nd, 2012

Chair for Experimental Physics and Astroparticle Physics

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽ へ ⊙

Outline

Introduction

- Neutrino-less Double Beta Decay
- The GERDA experiment
- ⁴²K background
- BEGe Pulse Shape Analysis

2 Efficiency for detectors in vacuum cryostats

- ⁹⁰Sr measurements
- ¹⁰⁶Ru measurements

Monte Carlo analysis

- Surface events identification and validation with 90Sr data
- Potential impact on GERDA

イロト イヨト イヨト イヨト

Double Beta Decay

[[]Oleg Chkvorets, PhD thesis, July 2008]

・ロト ・回ト ・ヨト ・

Introduction The GERDA experiment

Germanium Detector Array (GERDA)

・ロト ・回ト ・ヨト ・ヨト

GERDA phases

Phase I

Coaxial

- 17.6 kg HPGe (86% ⁷⁶Ge)
- Goal: $T_{1/2}^{etaeta(0
 u)}\left({}^{76} extsf{Ge}
 ight)\gtrsim10^{25}$ y
- Measured Background Index (B.I.) before PSD

$$1.7^{+0.9}_{-0.5} \cdot 10^{-2} cts/(keV \cdot kg \cdot yr)$$

1950keV - 2150keV (Nov11-Feb12)

Phase II

Coaxial+BEGe

- + 20 kg *BEGe* (87% ⁷⁶Ge)
- Enhanced Pulse Shape Analysis
- LAr instrumentation
- Goal:
 - . B. I. $\lesssim 1.0 \cdot 10^{-3} cts/(keV \cdot kg \cdot yr)$

.
$${\cal T}_{1/2}^{etaeta(0
u)}\left({}^{76}{\it Ge}
ight)\gtrsim 1.5\cdot 10^{26}$$
 yr

$^{42}\mathsf{K}$ in GERDA

Phase I solution

The A/E method

[JINST, 4 2009, P10007]

イロト イヨト イヨト イヨ

The A/E method

[JINST, 4 2009, P10007]

-

・ロト ・回ト ・ヨト ・

Efficiency for detectors in vacuum cryostats

⁹⁰Sr measurements

ate [1/(s * 5keV)]

0.1

0.001

0.0001

To test the rejection of n+ surface events we measured β -emitters with *BEGe* in vacuum cryostats.

⁹⁰Sr stability tests: detector, cryostat and HV dependence.

1000

Energy [keV]

1500

Sr Spectrum

 $^{90}Sr \rightarrow ^{90}Y \rightarrow ^{90}Zr$

Detector	ø[mm]	Thickness [mm]	Mass [kg]	Dead Layer [mm]	Cryostat
DD	74	32	0.700	0.45	Al 1.5 mm
CC	74.5	33	0.760	0.70	Al 1.5 mm
LD	71.5	50.5	1.018	0.60	C fibre 0.6 mm
BBS	75.1	30.7	0.734	0.50	Al 1.5 mm

2000

500

Efficiency for detectors in vacuum cryostats

⁹⁰Sr measurements

To test the rejection of n+ surface events we measured β -emitters with *BEGe* in vacuum cryostats.

⁹⁰Sr stability tests: detector, cryostat and HV dependence.

1000

Energy [keV]

1500

Sr Spectrum - LD_BEGe thin carbon window

 $^{90}Sr \rightarrow ^{90}Y \rightarrow ^{90}Zr$

Detector	ø[mm]	Thickness [mm]	Mass [kg]	Dead Layer [mm]	Cryostat
DD	74	32	0.700	0.45	Al 1.5 mm
CC	74.5	33	0.760	0.70	Al 1.5 mm
LD	71.5	50.5	1.018	0.60	C fibre 0.6 mm
BBS	75.1	30.7	0.734	0.50	Al 1.5 mm

2000

500

ate [1/(s * 5keV)]

0.1

0.001

0.0001

Efficiency for detectors in vacuum cryostats

Acceptance of ⁹⁰Sr

⁹⁰Sr results

	DL [mm]	E[MeV]	Acceptance	Comments
DD Sr	0.45	0.8 - 1.2	$6.08 \pm 0.07 \ 10^{-3}$	Al end cap bremsstrahlung
CC Sr	0.70	0.8 - 1.2	$12.7 \pm 0.1 \ 10^{-3}$	Al end cap and 0.7 mm DL
LD Sr	0.60	0.8 - 1.6	$3.5 \pm 0.2 \ 10^{-3}$	non standard BEGe

イロン イロン イヨン イヨ

¹⁰⁶Ru measurements

¹⁰⁶Ru measurement

イロト イヨト イヨト イヨト

¹⁰⁶Ru measurements

¹⁰⁶Ru measurement

Rejection between 1 and 2 MeV

イロン イロン イヨン イヨン

Rejection between 1 and 2 MeV

イロン イロン イヨン イヨン

Rejection between 1 and 2 MeV

The cut performance seems to be stable between 1 and 2 MeV, we will suppose that the upper limit got with the $\,^{90}{\rm Sr}$ at 1 MeV is still valid at 2 MeV.

At least 99% of NSP are rejected.

・ロン ・回 と ・ ヨン・

NSP interpretation and MC approach

	Dead Layer	Dead Layer	Dead Layer
	Active Volume	Active Volume	Active Volume
Laboratory			
Charge collection: Read energy:	fast (SSE) 100%	slow (NSP) ?	slow (NSP) 100% B + ?% A
Monte Carlo:			
Energy: Flag:	100% gamma-like	Zero	100% B NSP-like
			[월 → 《 불 → 《 불 → [월 IMPPS July 2012

13 / 17

Monte Carlo Analysis & ⁹⁰Sr validation

⁹⁰Sr Spectrum;

gamma-like spectrum; NSP-like spectrum;

・ロン ・回 と ・ ヨン・

Monte Carlo Analysis & ⁹⁰Sr validation

⁹⁰Sr Spectrum;

gamma-like spectrum; NSP-like spectrum;

Cut efficiency hypothesis: 80% of gamma-like 99.9% NSP-like rejection

イロト イヨト イヨト イ

Monte Carlo Analysis & ⁹⁰Sr validation

⁴²K in LAr simulation

 $\overline{\mathcal{I}} \land \mathbb{C}$

⁴²K in LAr simulation

⁴²K in LAr simulation

A. Lazzaro 🔺 🌆 🔛

- Study of BEGe detector response to surface interactions on the n^+ contact.
- Measure of external β-source spectrum suppression in vacuum cryostats (> 99%).
 Analysis of HV, cryostat and dead layer thickness dependences.
- Develop of Monte Carlo analysis criteria to identify the candidate NSP events.
- Estimation of β -particle discrimination efficiency (> 99.9%).
- Prediction for the potential reduction of ^{42}K background in GERDA Phase II down to a level compatible with the specifications $[\mathcal{O}(10^{-4})~\text{cts}/(\text{keV}\cdot\text{kg}\cdot\text{yr})].$

イロト イポト イヨト イヨト

- Test with bare *BEGe* in liquid argon spiked in ⁴²Ar (LArGe) are on going at LNGS. The efficiency predicted seems to be achievable after some improvements of the electronic noise.
- Due to the sensitivity to electronic conditions, GERDA Phase II set-up (pre-amp, etc.) have to be tested and tuned to reach a sufficient pulse shape analysis performances.
- A better understanding of the charge collection from the nominal dead layer is needed to provide improve the Monte Carlo simulations of surface events. The MAJORANA collaboration is also working on it.
- Up to now the cut is optimized for the high energy part of the spectrum, it will be interesting to extend this study to the lower energies.

イロト 不得下 イヨト イヨト

The A/E cut

・ロト ・回ト ・ヨト

The A/E cut

・ロン ・回 と ・ ヨン・