Stability of Generalized Kasner spacetimes

Cora Uhlemann

LMU, Prof. Stefan Hofmann TUM, Prof. Alejandro Ibarra

23rd IMPRS EPP Workshop

Max Planck Institute for Physics Munich, July 2nd 2012

Geometry near initial singularity Relevance of Generalized Kasner

Geometry near initial singularity

Relevance of singularities

Existence of singularities in GR (\hookrightarrow Penrose-Hawking)

- \Rightarrow indicates required completion of gravity
- \Rightarrow constrains candidate theories

Geometry near initial singularity Relevance of Generalized Kasner

Geometry near initial singularity

Relevance of singularities

Existence of singularities in GR (\hookrightarrow Penrose-Hawking)

- \Rightarrow indicates required completion of gravity
- \Rightarrow constrains candidate theories

\hookrightarrow How the singularity is approached?

• apparent singularities, foremost: initial singularity

Geometry near initial singularity Relevance of Generalized Kasner

Geometry near initial singularity

Relevance of singularities

Existence of singularities in GR (\hookrightarrow Penrose-Hawking)

- \Rightarrow indicates required completion of gravity
- \Rightarrow constrains candidate theories

\hookrightarrow How the singularity is approached?

- apparent singularities, foremost: initial singularity
- BKL limit, Cosmological Billiards
 - \Rightarrow some answers, but new questions

Geometry near initial singularity Relevance of Generalized Kasner

Geometry near initial singularity

Relevance of singularities

Existence of singularities in GR (\hookrightarrow Penrose-Hawking)

- \Rightarrow indicates required completion of gravity
- \Rightarrow constrains candidate theories

\hookrightarrow How the singularity is approached?

- apparent singularities, foremost: initial singularity
- BKL limit, Cosmological Billiards
 - \Rightarrow some answers, but new questions
- role played by isometries

Geometry near initial singularity Relevance of Generalized Kasner

Geometry near initial singularity

Relevance of singularities

Existence of singularities in GR (\hookrightarrow Penrose-Hawking)

- \Rightarrow indicates required completion of gravity
- \Rightarrow constrains candidate theories

\hookrightarrow How the singularity is approached?

- apparent singularities, foremost: initial singularity
- BKL limit, Cosmological Billiards
 - \Rightarrow some answers, but new questions
- role played by isometries
- possible destabilization due to perturbations

Geometry near initial singularity Relevance of Generalized Kasner

Relevance of Generalized Kasner

Belinsky-Khalatnikov-Lifshitz (BKL) conjecture

Geometry near initial singularity Relevance of Generalized Kasner

Relevance of Generalized Kasner

Belinsky-Khalatnikov-Lifshitz (BKL) conjecture

- Bianchi VIII and IX 'close' to singularity
- succession of Kasner (Bianchi I) epochs

Geometry near initial singularity Relevance of Generalized Kasner

Relevance of Generalized Kasner

Belinsky-Khalatnikov-Lifshitz (BKL) conjecture

- Bianchi VIII and IX 'close' to singularity
- succession of Kasner (Bianchi I) epochs

Cosmic Microwave Background (CMB)

- highly isotropic, small anisotropies
- anisotropic primordial cosmologies possible

Geometry near initial singularity Relevance of Generalized Kasner

Relevance of Generalized Kasner

Belinsky-Khalatnikov-Lifshitz (BKL) conjecture

- Bianchi VIII and IX 'close' to singularity
- succession of Kasner (Bianchi I) epochs

Cosmic Microwave Background (CMB)

- highly isotropic, small anisotropies
- anisotropic primordial cosmologies possible

Possibility of isotropization

- isotropic cosmologies may evolve
- via isotropization due to inflation

Guideline for Bianchi I Imprints of anisotropy

Guideline: Background

Bianchi I background in conformal time

$$ds^{2} = a^{2}(\eta) \left[-d\eta^{2} + \gamma_{ij}(\eta) dx^{i} dx^{j} \right]$$
(1)

$$\gamma_{ij}(\eta) = e^{2\beta_i(\eta)}\delta_{ij} \qquad \sum_i \beta_i = 0$$

shear : $2\sigma_{ij} := \gamma'_{ij} : (\sigma^i_i)' = (\gamma^{ik}\sigma_{kj})' \neq \gamma^{ij}\sigma'_i$

ullet consider minimally coupled scalar field φ with potential V

Guideline for Bianchi I Imprints of anisotropy

Guideline: Background

Bianchi I background in conformal time

$$ds^{2} = a^{2}(\eta) \left[-d\eta^{2} + \gamma_{ij}(\eta) dx^{i} dx^{j} \right]$$
(1)

$$\gamma_{ij}(\eta) = e^{2\beta_i(\eta)}\delta_{ij} \qquad \sum_i \beta_i = 0$$

shear : $2\sigma_{ij} := \gamma'_{ij} : (\sigma^i_j)' = (\gamma^{ik}\sigma_{kj})' \neq \gamma^{ij}\sigma'_i$

- ullet consider minimally coupled scalar field arphi with potential V
- Friedmann equations and Klein Gordon equation

$$\begin{split} \kappa a^2 V &= 2\mathcal{H}^2 + \mathcal{H}' \qquad \kappa (\varphi')^2 = 2\mathcal{H}^2 - 2\mathcal{H}' - \sigma^2 \\ \varphi'' &+ 2\mathcal{H}\varphi' + a^2 V_\varphi = 0 \\ \bullet \text{ evolution of the shear } (\sigma^i_i)' &= -2\mathcal{H}\sigma^i_i \end{split}$$

Guideline for Bianchi I Imprints of anisotropy

Guideline: Perturbations

Bianchi I perturbation in Newtonian gauge

$$ds^{2} = a^{2} \left[-(1+2\Phi)d\eta^{2} + (\gamma_{ij} + h_{ij})dx^{i}dx^{j} \right]$$
(2)
$$h_{ij} = -2\Psi \left(\gamma_{ij} + \frac{\sigma_{ij}}{\mathcal{H}} \right) + 2\partial_{(i}E^{i=0}_{j} + \frac{\partial_{i}E^{ij}=0=E^{i}_{i}}{2E_{ij}}$$

Guideline for Bianchi I Imprints of anisotropy

Guideline: Perturbations

Bianchi I perturbation in Newtonian gauge

$$ds^{2} = a^{2} \left[-(1+2\Phi)d\eta^{2} + (\gamma_{ij} + h_{ij})dx^{i}dx^{j} \right]$$
(2)
$$h_{ij} = -2\Psi \left(\gamma_{ij} + \frac{\sigma_{ij}}{\mathcal{H}} \right) + \frac{\partial_{i}E^{i} = 0}{2\partial_{(i}E_{j)}} + \frac{\partial_{i}E^{ij} = 0 = E^{i}_{i}}{2E_{ij}}$$

• identify suitable set of gauge-invariant variables

$$\left\{ Q=\chi+rac{\Psi}{\mathcal{H}}arphi',\Phi,\Psi,\Phi^{i}=-(E^{i})',E_{ij}
ight\}$$

Guideline for Bianchi I Imprints of anisotropy

Guideline: Perturbations

Bianchi I perturbation in Newtonian gauge

$$ds^{2} = a^{2} \left[-(1+2\Phi)d\eta^{2} + (\gamma_{ij} + h_{ij})dx^{i}dx^{j} \right]$$
(2)
$$h_{ij} = -2\Psi \left(\gamma_{ij} + \frac{\sigma_{ij}}{\mathcal{H}} \right) + \frac{\partial_{i}E^{i}=0}{2\partial_{(i}E_{j)}} + \frac{\partial_{i}E^{ij}=0=E_{i}^{i}}{2E_{ij}}$$

• identify suitable set of gauge-invariant variables

$$\left\{ Q = \chi + \frac{\Psi}{\mathcal{H}} \varphi', \Phi, \Psi, \Phi^{i} = -(E^{i})', E_{ij} \right\}$$

mode decomposition via Fourier transform

- comoving coordinate system $\{x^i\} \leftrightarrow \{k_i\} : k_i' = 0$
- pick local basis: $\{e^1, e^2\} \perp k_i$

• e.g shear:
$$\sigma_{\parallel} = \sigma_{ij}\hat{k}^i\hat{k}^j$$
 $\sigma_{V^a} = \sigma_{ij}\hat{k}^i e_a^j$ $\sigma_{T^{\lambda}} = \sigma_{ij}\epsilon_{\lambda}^{ij}$

Guideline for Bianchi I Imprints of anisotropy

Imprints of anisotropy

3 physical dof $V := a(Q, E_+, E_{\times})(\eta, k_i)$

Guideline for Bianchi I Imprints of anisotropy

Imprints of anisotropy

- 3 physical dof $V := a(Q, E_+, E_{\times})(\eta, k_i)$
 - dependence on k_i , not only on k

Guideline for Bianchi I Imprints of anisotropy

Imprints of anisotropy

- 3 physical dof $V := a(Q, E_+, E_{\times})(\eta, k_i)$
 - dependence on k_i , not only on k
 - coupling: scalar perturbations \leftrightarrow gravitational waves

$$V'' + k^2 V - \begin{pmatrix} \frac{z_s''}{z_s} & 0 & 0\\ 0 & \frac{z_+''}{z_+} & 0\\ 0 & 0 & \frac{z_\times''}{z_\times} \end{pmatrix} V = \begin{pmatrix} 0 & \aleph_+ & \aleph_\times \\ \aleph_+ & 0 & \beth\\ \aleph_\times & \beth & 0 \end{pmatrix} V \quad (3)$$

Guideline for Bianchi I Imprints of anisotropy

Imprints of anisotropy

- 3 physical dof $V := a(Q, E_+, E_{\times})(\eta, k_i)$
 - dependence on k_i , not only on k
 - coupling: scalar perturbations \leftrightarrow gravitational waves

$$V'' + k^2 V - \begin{pmatrix} \frac{z_s''}{z_s} & 0 & 0\\ 0 & \frac{z_+''}{z_+} & 0\\ 0 & 0 & \frac{z_\times''}{z_\times} \end{pmatrix} V = \begin{pmatrix} 0 & \aleph_+ & \aleph_\times \\ \aleph_+ & 0 & \beth\\ \aleph_\times & \beth & 0 \end{pmatrix} V \quad (3)$$

decoupling on subHubble scales: $V'' + k^2 V = 0$ for $k \gg H$

Guideline for Bianchi I Imprints of anisotropy

Imprints of anisotropy

- 3 physical dof $V := a(Q, E_+, E_{\times})(\eta, k_i)$
 - dependence on k_i , not only on k
 - coupling: scalar perturbations \leftrightarrow gravitational waves

$$V'' + k^2 V - \begin{pmatrix} \frac{z_s''}{z_s} & 0 & 0\\ 0 & \frac{z_+''}{z_+} & 0\\ 0 & 0 & \frac{z_\times''}{z_\times} \end{pmatrix} V = \begin{pmatrix} 0 & \aleph_+ & \aleph_\times \\ \aleph_+ & 0 & \beth\\ \aleph_\times & \beth & 0 \end{pmatrix} V \quad (3)$$

decoupling on subHubble scales: $V'' + k^2 V = 0$ for $k \gg H$

• vector and remaining scalar modes cannot be ignored

•
$$\Phi_a = \Phi_a(Q, E_+, E_{\times})$$

• $\Phi = \Phi(Q, E_+, E_{\times}), \Psi = \Psi(Q, E_+, E_{\times})$

Kasner as special case of Bianchi I Application of CPT to Kasner Conclusions

Kasner as Bianchi I

Generic Kasner

$$\gamma_{ij} = (\eta/\eta_0)^{2Q_i} \delta_{ij} \qquad \sigma_{ij} = (Q_i/\eta)\gamma_{ij} = (2\mathcal{H}Q_i)\gamma_{ij} \qquad (4)$$
$$Q_1 \le Q_2 \le Q_3 \qquad \sum_i Q_i = 0 \qquad \sum_i Q_i^2 = 3/2$$

• vacuum solution ($\varphi = 0, V = 0$) characterized by Weyl tensor R = 0 $R_{\mu\nu} = 0$ $R_{\mu\nu\rho\sigma} = C_{\mu\nu\rho\sigma}$ $C^2 = C_{\mu\nu\rho\sigma}C^{\mu\nu\rho\sigma}$

Kasner as special case of Bianchi I Application of CPT to Kasner Conclusions

Kasner as Bianchi I

Generic Kasner

$$\gamma_{ij} = (\eta/\eta_0)^{2Q_i} \delta_{ij} \qquad \sigma_{ij} = (Q_i/\eta)\gamma_{ij} = (2\mathcal{H}Q_i)\gamma_{ij} \qquad (4)$$
$$Q_1 \le Q_2 \le Q_3 \qquad \sum_i Q_i = 0 \qquad \sum_i Q_i^2 = 3/2$$

• vacuum solution ($\varphi=0,\,V=0$) characterized by Weyl tensor

$$R=0$$
 $R_{\mu
u}=0$ $R_{\mu
u
ho\sigma}=C_{\mu
u
ho\sigma}$ $C^2=C_{\mu
u
ho\sigma}C^{\mu
u
ho\sigma}$

• asymptotically modes align $k \stackrel{\eta
ightarrow 0}{\longrightarrow} k_3 (\eta/\eta_0)^{-Q_3}$

principal axis U simplification

$$\Sigma_{\parallel} = 2Q_3 \quad \Sigma_{V^a} = 0 \quad \Sigma'_{T^{\lambda}} = 0 \tag{5}$$

$$\Sigma_T^2 = \Sigma_{T^+}^2 + \Sigma_{T^{ imes}}^2 = 6(1-Q_3^2)$$

Kasner as special case of Bianchi I Application of CPT to Kasner Conclusions

Application of CPT

• system for E_{λ} can be decoupled and solved analytically with combined Bessel functions $Z_{\nu} = AJ_{\nu} + BN_{\nu}$

$$\begin{pmatrix} E_+ \\ E_{\times} \end{pmatrix} [\eta] = \begin{pmatrix} \Sigma_+ & \Sigma_{\times} \\ \Sigma_{\times} & -\Sigma_+ \end{pmatrix} \begin{pmatrix} Z_0 \\ Z_{\sqrt{3\frac{1+Q_3}{1-Q_3}}} \end{pmatrix} \left[\frac{k_3\eta_0}{1-Q_3} \left(\frac{\eta}{\eta_0} \right)^{1-Q_3} \right]$$

Kasner as special case of Bianchi I Application of CPT to Kasner Conclusions

Application of CPT

• system for E_{λ} can be decoupled and solved analytically with combined Bessel functions $Z_{\nu} = AJ_{\nu} + BN_{\nu}$

$$\begin{pmatrix} \mathsf{E}_+ \\ \mathsf{E}_{\times} \end{pmatrix} [\eta] = \begin{pmatrix} \mathsf{\Sigma}_+ & \mathsf{\Sigma}_{\times} \\ \mathsf{\Sigma}_{\times} & -\mathsf{\Sigma}_+ \end{pmatrix} \begin{pmatrix} Z_0 \\ Z_{\sqrt{3\frac{1+Q_3}{1-Q_3}}} \end{pmatrix} \left[\frac{k_3\eta_0}{1-Q_3} \left(\frac{\eta}{\eta_0} \right)^{1-Q_3} \right]$$

• effect on Weyl square (simplest case $\Sigma_{\times} = 0$)

$\Xi^{(2)}(k_3,\eta)\propto$	\uparrow growing	\downarrow decaying
+ polarization	η^0	$\eta^{-4(1-Q_3)}$
imes polarization	$\eta \sqrt{12(1-Q_3^2)}$	$\eta^{-\sqrt{12(1-Q_3^2)}}$
nuing modes destabilize generic Kasper		

decaying modes destabilize generic Kasner

Kasner as special case of Bianchi I Application of CPT to Kasner Conclusions

Conclusions

- Relevance of BKL and Cosmological Billiard raised the fundamental question of stability for Kasner
- Cosmological Perturbation Theory for Bianchi I has been developed and allows for dynamical investigation
 - anisotropy causes coupling of perturbations
 - interplay with 'derived' modes, dependence on wavenumber
- Application of CPT to generic Kasner
 - allows for asymptotic investigation
 - shows that decaying modes destabilize generic Kasner
 - ⇒ potentially threats Stability of Generalized Kasner further work is required to provide more details
 Generalized Kasner [?]→ Generic Kasner

Motivation: PH, BKL, Cosmo Billiard CPT in full glory Stability of Kasner

Literature

- PENROSE, HAWKING: The singularities of gravitational collapse and cosmology
- BELINSKII, LIFSHITZ, KHALATNIKOV: Oscillatory Approach to a Singular Point in the Relativistic Cosmology
- DAMOUR, HENNEAUX, NICOLAI: Cosmological Billiards
- MUKHANOV, FELDMAN, BRANDENBERGER: *Theory of* cosmological perturbations
- Pereira, Pitrou, Uzan:
 - Theory of cosmological perturbations in an anisotropic universe
 - Predictions from an anisotropic inflationary era
- KOFMAN, PITROU, UZAN: *Perturbations of generic Kasner spacetimes and their stability*

Motivation: PH, BKL, Cosmo Billiard CPT in full glory Stability of Kasner

Penrose-Hawking Singularity Theorem

No spacetime \mathcal{M} can satisfy all of the following 3 requirements:

- ${\bf 0} \ \nexists \ {\rm closed \ timelike \ curve \ } \gamma \in {\cal M}$
- **2** \forall inextendible causal geodesic $\gamma \in \mathcal{M} \exists p_{1/2}$ conjugate
- **③** ∃ future/past-trapped set $S \in M$

Corollary in more physical terms

A spacetime \mathcal{M} cannot satisfy causal geodesic completeness, if together with Einstein's equations the following conditions hold:

- $\textcircled{0} \ \mathcal{M} \ \text{contains no closed timelike curves}$
- $\textcircled{O} \ \mathcal{M} \ \text{satisfies energy and generality conditions}$
- M contains either a trapped surface, a compact spacelike hypersurface or a point p for which the convergence of all the null geodesics through p changes sign in the past of p

Motivation: PH, BKL, Cosmo Billiard CPT in full glory Stability of Kasner

BKL singularity

Generalized Kasner in synchronous gauge

$$ds^{2} = -dt^{2} + (a^{2}I_{i}I_{j} + b^{2}m_{i}m_{j} + c^{2}n_{i}n_{j}) dx^{i}dx^{j}$$

Kasner exponents $a = t^{p_l}, b = t^{p_m}, c = t^{p_n}$ Kasner axes l, m, n

- near singularity: anisotropic, homogeneous, chaotic solution
- **epoch**: time interval in which order of p_l, p_m, p_n is fixed
 - 3dim Ricci negligible compared to terms with time-derivatives
 - 'dangerous' terms can be included in a new system
 ⇒ asymptotic solution can be described in full details and
 description is valid and stable up to the singularity!
- era: time interval in which largest p remains the same

Motivation: PH, BKL, Cosmo Billiard CPT in full glory Stability of Kasner

$$V'' + k^2 V - \begin{pmatrix} \frac{z_s''}{z_s} & 0 & 0\\ 0 & \frac{z_+''}{z_+} & 0\\ 0 & 0 & \frac{z_\times''}{z_\times} \end{pmatrix} V = \begin{pmatrix} 0 & \aleph_+ & \aleph_\times \\ \aleph_+ & 0 & \beth\\ \aleph_\times & \beth & 0 \end{pmatrix} V$$

Details on relevant functions

$$\begin{split} \frac{z_s''}{z_s} &= \frac{a''}{a} - a^2 V_{,\varphi\varphi} + \frac{1}{a^2} \left(\frac{2a^2 \kappa \varphi'^2}{2\mathcal{H} - \sigma_{\parallel}} \right)' \\ \frac{z_{\lambda}''}{z_{\lambda}} &= \frac{a''}{a} + 2\sigma_{T^{(1-\lambda)}}^2 + \frac{(a^2 \sigma_{\parallel})'}{a^2} + \frac{1}{a^2} \left(\frac{2a^2 \sigma_{T^{\lambda}}^2}{2\mathcal{H} - \sigma_{\parallel}} \right)' \\ \aleph_{\lambda} &= \frac{\sqrt{\kappa}}{a^2} \left(\frac{2a^2 \varphi' \sigma_{T^{\lambda}}}{2\mathcal{H} - \sigma_{\parallel}} \right)' \qquad \square = \frac{1}{a^2} \left(\frac{2a^2 \sigma_{T^{\times}} \sigma_{T^{+}}}{2\mathcal{H} - \sigma_{\parallel}} \right)' - 2\sigma_{T^{\times}} \sigma_{T^{+}} \end{split}$$

$$e_{i}^{1} = \begin{pmatrix} e^{\beta_{1}} \left[\cos \alpha \cos \beta \cos \gamma - \sin \alpha \sin \gamma \right] \\ e^{\beta_{2}} \left[\cos \alpha \cos \beta \sin \gamma + \sin \alpha \cos \gamma \right] \\ -e^{\beta_{3}} \cos \alpha \sin \beta \end{pmatrix} \quad \hat{k}_{i} = \begin{pmatrix} e^{\beta_{1}} \sin \beta \cos \gamma \\ e^{\beta_{2}} \sin \beta \sin \gamma \\ e^{\beta_{3}} \cos \beta \end{pmatrix} \\ e_{i}^{2} = \begin{pmatrix} -e^{\beta_{1}} \left[\sin \alpha \cos \beta \cos \gamma + \cos \alpha \sin \gamma \right] \\ e^{\beta_{2}} \left[-\sin \alpha \cos \beta \sin \gamma + \cos \alpha \cos \gamma \right] \\ e^{\beta_{3}} \sin \alpha \sin \beta \end{pmatrix}$$

Connection between Euler angles

$$(e_i^1 e_2^i)' = 0 : \alpha' = -\gamma' \cos \beta$$
$$k_i' = 0 : \tan \gamma = e^{\beta_1 - \beta_2} \tan \gamma_0 \quad \tan \beta = e^{\beta_3 - \beta_2} \frac{\sin \gamma_0}{\sin \gamma} \tan \beta_0$$

Motivation: PH, BKL, Cosmo Billiard CPT in full glory Stability of Kasner

Coupled system for gravitational waves

$$\begin{split} E_{+}^{\prime\prime} &+ \frac{1}{\eta} E_{+}^{\prime} + \left[k_{I}^{2} \left(\frac{\eta}{\eta_{0}} \right)^{-2Q_{I}} - \frac{1}{2\eta^{2}} \Sigma_{T^{\times}}^{2} \right] E_{+} = -\frac{1}{2\eta^{2}} \Sigma_{T^{+}} \Sigma_{T^{\times}} E_{\times} \\ E_{\times}^{\prime\prime} &+ \frac{1}{\eta} E_{\times}^{\prime} + \left[k_{I}^{2} \left(\frac{\eta}{\eta_{0}} \right)^{-2Q_{I}} - \frac{1}{2\eta^{2}} \Sigma_{T^{+}}^{2} \right] E_{\times} = -\frac{1}{2\eta^{2}} \Sigma_{T^{+}} \Sigma_{T^{\times}} E_{+} \end{split}$$

General solution

$$E_{+} = \Sigma_{T^{+}} Z_{0} + \Sigma_{T_{\times}} Z_{\sqrt{3\frac{1+Q_{I}}{1-Q_{I}}}} \qquad E_{\times} = \Sigma_{T^{\times}} Z_{0} - \Sigma_{T_{+}} Z_{\sqrt{3\frac{1+Q_{I}}{1-Q_{I}}}}$$

Bessel functions $Z_{\nu}(x) = AJ_{\nu}(x) + BN_{\nu}(x)$

Motivation: PH, BKL, Cosmo Billiard CPT in full glory Stability of Kasner

Bianchi I asymptotically becomes Kasner

- early times (prior to inflation): shear σ dominates
- \bullet contribution φ to energy density mainly given by V
 - \hookrightarrow pure cosmological constant $V=V_0$ $\dot{arphi}=0$

Bianchi I as Generalized Kasner

$$ds^{2} = -dt^{2} + X_{i}(t)^{2}(dx^{i})^{2}$$

$$X_{i}(t) = a_{*} \left[\sinh\left(\frac{t}{t_{*}}\right) \right]^{\frac{1}{3}} \left[\tanh\left(\frac{t}{2t^{*}}\right) \right]^{\frac{2}{3}} \sin\left(\beta + \frac{2\pi}{3}i\right)$$

$$\cong \left(\frac{t}{t^{*}}\right)^{\frac{2}{3}Q_{i} + \frac{1}{3}} \left[1 + \frac{1}{18} \left(1 - Q_{i}\right) \left(\frac{t}{t_{*}}\right)^{2} \right]$$