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Guideline: Background

Bianchi I background in conformal time

ds2 = a2(η)
[
−dη2 + γij(η)dx idx j

]
(1)

γij(η) = e2βi (η)δij
∑

i βi = 0

shear : 2σij := γ′ij : (σij )
′ = (γ ikσkj)

′ 6= γ ijσ′ij

consider minimally coupled scalar field ϕ with potential V

Friedmann equations and Klein Gordon equation

κa2V = 2H2 +H′ κ(ϕ′)2 = 2H2 − 2H′ − σ2

ϕ′′ + 2Hϕ′ + a2Vϕ = 0

evolution of the shear (σij )
′ = −2Hσij
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Guideline: Perturbations

Bianchi I perturbation in Newtonian gauge

ds2 = a2
[
−(1 + 2Φ)dη2 + (γij + hij)dx idx j

]
(2)

hij = −2Ψ
(
γij +

σij
H

)
+

∂iE
i=0

2∂(iEj) +
∂iE

ij=0=E i
i

2Eij

identify suitable set of gauge-invariant variables{
Q = χ+ Ψ

Hϕ
′,Φ,Ψ,Φi = −(E i )′,Eij

}
mode decomposition via Fourier transform

comoving coordinate system {x i} ↔ {ki} : k ′i = 0
pick local basis: {e1, e2} ⊥ ki
e.g shear: σ‖ = σij k̂

i k̂ j σV a = σij k̂
ie j

a σTλ = σijε
ij
λ
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Imprints of anisotropy

3 physical dof V := a(Q,E+,E×)(η, ki )

dependence on ki , not only on k

coupling: scalar perturbations ↔
+ ↔ ×

gravitational waves

V ′′ + k2V −


z ′′s
zs

0 0

0
z ′′+
z+

0

0 0
z ′′×
z×

V =

 0 ℵ+ ℵ×
ℵ+ 0 i
ℵ× i 0

V (3)

decoupling on subHubble scales: V ′′ + k2V = 0 for k � H
vector and remaining scalar modes cannot be ignored

Φa = Φa(Q,E+,E×)
Φ = Φ(Q,E+,E×),Ψ = Ψ(Q,E+,E×)
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Kasner as Bianchi I

Generic Kasner

γij = (η/η0)2Qi δij σij = (Qi/η)γij = (2HQi )γij (4)

Q1 ≤ Q2 ≤ Q3
∑

i Qi = 0
∑

i Q2
i = 3/2

vacuum solution (ϕ = 0,V = 0) characterized by Weyl tensor

R = 0 Rµν = 0 Rµνρσ = Cµνρσ C 2 = CµνρσCµνρσ

asymptotically modes align k
η→0−→ k3(η/η0)−Q3

principal axis ⇓ simplification

Σ‖ = 2Q3 ΣV a = 0 Σ′Tλ = 0 (5)

Σ2
T = Σ2

T+ + Σ2
T× = 6(1− Q2

3 )
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Application of CPT

system for Eλ can be decoupled and solved analytically
with combined Bessel functions Zν = AJν + BNν(

E+

E×

)
[η] =

(
Σ+ Σ×
Σ× −Σ+

)( Z0

Z√
3

1+Q3
1−Q3

)[
k3η0

1− Q3

(
η

η0

)1−Q3
]

effect on Weyl square (simplest case Σ× = 0)

Ξ(2)(k3, η) ∝ ↑ growing ↓ decaying

+ polarization η0 η−4(1−Q3)

× polarization η
√

12(1−Q2
3 ) η−

√
12(1−Q2

3 )

decaying modes destabilize generic Kasner
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Conclusions

Relevance of BKL and Cosmological Billiard
raised the fundamental question of stability for Kasner

Cosmological Perturbation Theory for Bianchi I
has been developed and allows for dynamical investigation

anisotropy causes coupling of perturbations
interplay with ’derived’ modes, dependence on wavenumber

Application of CPT to generic Kasner
allows for asymptotic investigation
shows that decaying modes destabilize generic Kasner
⇒ potentially threats Stability of Generalized Kasner
further work is required to provide more details

Generalized Kasner
?↔ Generic Kasner
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Penrose-Hawking Singularity Theorem

No spacetime M can satisfy all of the following 3 requirements:

1 @ closed timelike curve γ ∈M
2 ∀ inextendible causal geodesic γ ∈M ∃p1/2 conjugate

3 ∃ future/past-trapped set S ∈M

Corollary in more physical terms

A spacetime M cannot satisfy causal geodesic completeness, if
together with Einstein’s equations the following conditions hold:

1 M contains no closed timelike curves

2 M satisfies energy and generality conditions

3 M contains either a trapped surface, a compact spacelike
hypersurface or a point p for which the convergence of all the
null geodesics through p changes sign in the past of p

Cora Uhlemann Stability of Generalized Kasner spacetimes
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BKL singularity

Generalized Kasner in synchronous gauge

ds2 = −dt2 +
(
a2li lj + b2mimj + c2ninj

)
dx idx j

Kasner exponents a = tpl , b = tpm , c = tpn Kasner axes l ,m, n

near singularity: anisotropic, homogeneous, chaotic solution

epoch: time interval in which order of pl , pm, pn is fixed

3dim Ricci negligible compared to terms with time-derivatives
’dangerous’ terms can be included in a new system
⇒ asymptotic solution can be described in full details and
description is valid and stable up to the singularity!

era: time interval in which largest p remains the same
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V ′′ + k2V −


z ′′s
zs

0 0

0
z ′′+
z+

0

0 0
z ′′×
z×

V =

 0 ℵ+ ℵ×
ℵ+ 0 i
ℵ× i 0

V

Details on relevant functions

z ′′s
zs

=
a′′

a
− a2V,ϕϕ +

1

a2

(
2a2κϕ′2

2H− σ‖

)′
z ′′λ
zλ

=
a′′

a
+ 2σ2

T (1−λ) +
(a2σ‖)

′

a2
+

1

a2

(
2a2σ2

Tλ

2H− σ‖

)′

ℵλ =

√
κ

a2

(
2a2ϕ′σTλ

2H− σ‖

)′
i =

1

a2

(
2a2σT×σT+

2H− σ‖

)′
− 2σT×σT+
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e1
i =

eβ1 [cosα cosβ cos γ − sinα sin γ]
eβ2 [cosα cosβ sin γ + sinα cos γ]

−eβ3 cosα sinβ

 k̂i =

eβ1 sinβ cos γ
eβ2 sinβ sin γ

eβ3 cosβ


e2
i =

−eβ1 [sinα cosβ cos γ + cosα sin γ]
eβ2 [− sinα cosβ sin γ + cosα cos γ]

eβ3 sinα sinβ


Connection between Euler angles

(e1
i e i2)′ = 0 : α′ = −γ′ cosβ

k ′i = 0 : tan γ = eβ1−β2 tan γ0 tanβ = eβ3−β2
sin γ0

sin γ
tanβ0
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Coupled system for gravitational waves

E ′′+ +
1

η
E ′+ +

[
k2
I

(
η

η0

)−2QI

− 1

2η2
Σ2
T×

]
E+ = − 1

2η2
ΣT+ΣT×E×

E ′′× +
1

η
E ′× +

[
k2
I

(
η

η0

)−2QI

− 1

2η2
Σ2
T+

]
E× = − 1

2η2
ΣT+ΣT×E+

General solution

E+ = ΣT+Z0 + ΣT×Z√
3

1+QI
1−QI

E× = ΣT×Z0 − ΣT+Z√
3

1+QI
1−QI

Bessel functions Zν(x) = AJν(x) + BNν(x)
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Bianchi I asymptotically becomes Kasner

early times (prior to inflation): shear σ dominates

contribution ϕ to energy density mainly given by V
↪→ pure cosmological constant V = V0 ϕ̇ = 0

Bianchi I as Generalized Kasner

ds2 = −dt2 + Xi (t)2(dx i )2

Xi (t) = a∗

[
sinh

(
t

t∗

)] 1
3 [

tanh
( t

2t∗

)] 2
3

sin(β+ 2π
3
i)

∼=
( t

t∗

) 2
3
Qi+

1
3

[
1 +

1

18
(1− Qi )

(
t

t∗

)2
]

⇒
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