
Florian Linder 
Freie Universität Berlin

Institut für theoretische Physik
AG Kleinert

IMPRS workshop
July 2nd, 2012

What Curves the Schwarzschild 
Geometry?
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Aim of my talk

● To present a different perspective on the 
Schwarzschild metric:

The gravitational field of a point mass

● Problem of multiplication of distributions

Gravity: nonlinear theory

Distributions: linear functionals
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Literature I: Products of
“Distributions”

● Schwarz (1951): theorem of the impossibility    
of the multiplication of distributions

● Colombeau (1984): Colombeau algebra
embedding generalized functions via 
convolution with smooth “mollifiers”

● Kleinert (2000): Definition of special products 
of distributions by claiming general coordinate 
invariance of path integrals
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Literature II: “Distributions” 
in GR

● Geroch and Traschen (1987): defined a 
class of metrics which can be treated with 
distributional methods

● Regularization techniques (1990s)
(e.g. Balasin and Nachbagauer (1993))

● Heinzle and Steinbauer (2002) studied the 
Schwarzschild metric with Colombeau's theory 
of generalized functions
→ only possible in Eddington-Finkelstein coordinates
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Content

● Theory of Gravitation
● Schwarzschild Metric
● Analogy to Electrostatics:

Schwarzschild metric → point mass
● Perturbative approach:

Point mass → Schwarzschild metric
● Conclusion
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Theory of Gravitation

● General coordinate invariance:

→ Transformation of the metric:

→ Christoffel symbols, covariant derivative...
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Theory of Gravitation

● Idea: 
– Masses deform space-time

– curvature causes forces

● Einstein equation:

describes the deformation of space-time

      : Einstein tensor (nonlinear in the metric)

      : stress-energy-tensor (contains mass density)

                     : gravitational constant
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Point Mass

● Stress-energy tensor of a point-mass at rest:

● Einstein Equation:
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Schwarzschild Metric

● Birkhoff's Theorem:

The Schwarzschild metric is the only nontrivial 
solution of the vacuum Einstein Equation:

of a spherically symmetric space-time.

● The line element is given by:

       

             with:
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Schwarzschild Metric

● Usual treatment:

cut out the point r=0 of manifold

→ need not care about the divergency

?
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Electrostatics

● Field of a positive point charge:

diverges at the origin

● Charge density:
– via distributional interpretation

– or by applying Gauss' theorem:
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Electrostatic → Gravitystatic

● Electric field becomes metric field

 

● Maxwell equation becomes Einstein equation
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What Curves the Schwarzschild 
Geometry?

● Corollary:

A spherically symmetric static space-time which 
obeys               is described by the following line 
element:

Its Einstein tensor is given by:
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What Curves the Schwarzschild 
Geometry?

● See mass in      with Gauss' theorem

with:
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What Curves the Schwarzschild 
Geometry?

● Solution in spherical coordinates:
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What Curves the Schwarzschild 
Geometry?

● Change to Cartesian coordinates:

This gives the expected stress-energy tensor of 
a point mass
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Perturbative Study of Point Mass

● Einstein equation for a point mass:

● Expand metric around the flat space-time:

● Inverse metric:

● Calculate Einstein tensor in order by order in
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Perturbative Study of Point Mass

● Solve differential equations:

● Obtain expansion of Schwarzschild metric in 
Schwarzschild coordinates order by order:

● But: convergence radius of geometric series is
→ no prediction for the origin
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Perturbative Study of Point Mass

● Einstein tensor to first order in      :

● Gauge freedom of linear gravity:

    : arbitrary vector field

→ Gauge invariance broken in 2nd order
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Perturbative Study of Point Mass

● Solve linear Einstein equation in (d >3) 
dimensions:
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Perturbative Study of Point Mass

● Find an appropriate gauge field:

● Derivative of     :

with:
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Perturbative Study of Point Mass

● Get the full Schwarzschild solution in 
Eddington-Finkelstein coordinates:
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Conclusion

● Problem solved with Colombeau algebra
But only in Eddington-Finkelstein coordinates

● Regularization independent technique
to see mass in Schwarzschild metric

● Perturbative approach:
Gauge 1st order solution → Schwarzschild 
metric in Eddington-Finkelstein coordinates

● Motovation for gauge via calculation in d>3 
dimensions



– 24 –

Conclusion

● Eddington-Finkelstein coordinates are the 
natural coordinates of a point mass
– Results from the perturbative study of the Einstein 

equation

– Only this choice of coordinates could be treated by 
Colombeau's theory of generalized functions

● Different coordinates of the Schwarzschild 
metric describe different space-times
since coordinate transformations diverge at
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Appendix
Closing the manifold

● Origin of coordinates is cut out
● Coordinate invariance

→ Infinity of different possibilities
● But: Which differentiable structure?

● Choose the simplest/most physical one
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Appendix
Eddington-Finkelstein coordinates

● Line element given by:

● Transformation from Schwarzschild to 
Eddington-Finkelstein coordinates:
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Appendix
Eddington-Finkelstein coordinates

Schwarzschild
Ingoing

Eddington-Finkelstein
Outgoing

Eddington-Finkelstein
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Appendix
Kruskal coordinates
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Appendix
Distributional calculation
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